Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells
Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been t...
Ausführliche Beschreibung
Autor*in: |
Xiaoxiao Gong [verfasserIn] Yinghao Huang [verfasserIn] Qianbo Ma [verfasserIn] Maocheng Jiang [verfasserIn] Kang Zhan [verfasserIn] Guoqi Zhao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Current Issues in Molecular Biology - MDPI AG, 2021, 44(2022), 11, Seite 5234-5246 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2022 ; number:11 ; pages:5234-5246 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/cimb44110356 |
---|
Katalog-ID: |
DOAJ011153695 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ011153695 | ||
003 | DE-627 | ||
005 | 20240414172758.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/cimb44110356 |2 doi | |
035 | |a (DE-627)DOAJ011153695 | ||
035 | |a (DE-599)DOAJ4d68a12afad14e30b697a62cdadcef36 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Xiaoxiao Gong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release. | ||
650 | 4 | |a quercetin | |
650 | 4 | |a fruit and vegetable extracts | |
650 | 4 | |a antioxidant | |
650 | 4 | |a barrier function | |
650 | 4 | |a anti-inflammatory | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Yinghao Huang |e verfasserin |4 aut | |
700 | 0 | |a Qianbo Ma |e verfasserin |4 aut | |
700 | 0 | |a Maocheng Jiang |e verfasserin |4 aut | |
700 | 0 | |a Kang Zhan |e verfasserin |4 aut | |
700 | 0 | |a Guoqi Zhao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Current Issues in Molecular Biology |d MDPI AG, 2021 |g 44(2022), 11, Seite 5234-5246 |w (DE-627)355690365 |w (DE-600)2090836-2 |x 14673045 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2022 |g number:11 |g pages:5234-5246 |
856 | 4 | 0 | |u https://doi.org/10.3390/cimb44110356 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4d68a12afad14e30b697a62cdadcef36 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1467-3045/44/11/356 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1467-3037 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1467-3045 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 44 |j 2022 |e 11 |h 5234-5246 |
author_variant |
x g xg y h yh q m qm m j mj k z kz g z gz |
---|---|
matchkey_str |
article:14673045:2022----::ureialvaelpplschrdidcdelaaenifamtovaeuainfhtrnbah |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.3390/cimb44110356 doi (DE-627)DOAJ011153695 (DE-599)DOAJ4d68a12afad14e30b697a62cdadcef36 DE-627 ger DE-627 rakwb eng QH301-705.5 Xiaoxiao Gong verfasserin aut Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release. quercetin fruit and vegetable extracts antioxidant barrier function anti-inflammatory Biology (General) Yinghao Huang verfasserin aut Qianbo Ma verfasserin aut Maocheng Jiang verfasserin aut Kang Zhan verfasserin aut Guoqi Zhao verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 44(2022), 11, Seite 5234-5246 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:44 year:2022 number:11 pages:5234-5246 https://doi.org/10.3390/cimb44110356 kostenfrei https://doaj.org/article/4d68a12afad14e30b697a62cdadcef36 kostenfrei https://www.mdpi.com/1467-3045/44/11/356 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 11 5234-5246 |
spelling |
10.3390/cimb44110356 doi (DE-627)DOAJ011153695 (DE-599)DOAJ4d68a12afad14e30b697a62cdadcef36 DE-627 ger DE-627 rakwb eng QH301-705.5 Xiaoxiao Gong verfasserin aut Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release. quercetin fruit and vegetable extracts antioxidant barrier function anti-inflammatory Biology (General) Yinghao Huang verfasserin aut Qianbo Ma verfasserin aut Maocheng Jiang verfasserin aut Kang Zhan verfasserin aut Guoqi Zhao verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 44(2022), 11, Seite 5234-5246 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:44 year:2022 number:11 pages:5234-5246 https://doi.org/10.3390/cimb44110356 kostenfrei https://doaj.org/article/4d68a12afad14e30b697a62cdadcef36 kostenfrei https://www.mdpi.com/1467-3045/44/11/356 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 11 5234-5246 |
allfields_unstemmed |
10.3390/cimb44110356 doi (DE-627)DOAJ011153695 (DE-599)DOAJ4d68a12afad14e30b697a62cdadcef36 DE-627 ger DE-627 rakwb eng QH301-705.5 Xiaoxiao Gong verfasserin aut Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release. quercetin fruit and vegetable extracts antioxidant barrier function anti-inflammatory Biology (General) Yinghao Huang verfasserin aut Qianbo Ma verfasserin aut Maocheng Jiang verfasserin aut Kang Zhan verfasserin aut Guoqi Zhao verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 44(2022), 11, Seite 5234-5246 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:44 year:2022 number:11 pages:5234-5246 https://doi.org/10.3390/cimb44110356 kostenfrei https://doaj.org/article/4d68a12afad14e30b697a62cdadcef36 kostenfrei https://www.mdpi.com/1467-3045/44/11/356 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 11 5234-5246 |
allfieldsGer |
10.3390/cimb44110356 doi (DE-627)DOAJ011153695 (DE-599)DOAJ4d68a12afad14e30b697a62cdadcef36 DE-627 ger DE-627 rakwb eng QH301-705.5 Xiaoxiao Gong verfasserin aut Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release. quercetin fruit and vegetable extracts antioxidant barrier function anti-inflammatory Biology (General) Yinghao Huang verfasserin aut Qianbo Ma verfasserin aut Maocheng Jiang verfasserin aut Kang Zhan verfasserin aut Guoqi Zhao verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 44(2022), 11, Seite 5234-5246 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:44 year:2022 number:11 pages:5234-5246 https://doi.org/10.3390/cimb44110356 kostenfrei https://doaj.org/article/4d68a12afad14e30b697a62cdadcef36 kostenfrei https://www.mdpi.com/1467-3045/44/11/356 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 11 5234-5246 |
allfieldsSound |
10.3390/cimb44110356 doi (DE-627)DOAJ011153695 (DE-599)DOAJ4d68a12afad14e30b697a62cdadcef36 DE-627 ger DE-627 rakwb eng QH301-705.5 Xiaoxiao Gong verfasserin aut Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release. quercetin fruit and vegetable extracts antioxidant barrier function anti-inflammatory Biology (General) Yinghao Huang verfasserin aut Qianbo Ma verfasserin aut Maocheng Jiang verfasserin aut Kang Zhan verfasserin aut Guoqi Zhao verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 44(2022), 11, Seite 5234-5246 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:44 year:2022 number:11 pages:5234-5246 https://doi.org/10.3390/cimb44110356 kostenfrei https://doaj.org/article/4d68a12afad14e30b697a62cdadcef36 kostenfrei https://www.mdpi.com/1467-3045/44/11/356 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 11 5234-5246 |
language |
English |
source |
In Current Issues in Molecular Biology 44(2022), 11, Seite 5234-5246 volume:44 year:2022 number:11 pages:5234-5246 |
sourceStr |
In Current Issues in Molecular Biology 44(2022), 11, Seite 5234-5246 volume:44 year:2022 number:11 pages:5234-5246 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
quercetin fruit and vegetable extracts antioxidant barrier function anti-inflammatory Biology (General) |
isfreeaccess_bool |
true |
container_title |
Current Issues in Molecular Biology |
authorswithroles_txt_mv |
Xiaoxiao Gong @@aut@@ Yinghao Huang @@aut@@ Qianbo Ma @@aut@@ Maocheng Jiang @@aut@@ Kang Zhan @@aut@@ Guoqi Zhao @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
355690365 |
id |
DOAJ011153695 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011153695</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414172758.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cimb44110356</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011153695</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4d68a12afad14e30b697a62cdadcef36</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoxiao Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quercetin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit and vegetable extracts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antioxidant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">barrier function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-inflammatory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yinghao Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qianbo Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maocheng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kang Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoqi Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Current Issues in Molecular Biology</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">44(2022), 11, Seite 5234-5246</subfield><subfield code="w">(DE-627)355690365</subfield><subfield code="w">(DE-600)2090836-2</subfield><subfield code="x">14673045</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:5234-5246</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cimb44110356</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4d68a12afad14e30b697a62cdadcef36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1467-3045/44/11/356</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1467-3037</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1467-3045</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2022</subfield><subfield code="e">11</subfield><subfield code="h">5234-5246</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xiaoxiao Gong |
spellingShingle |
Xiaoxiao Gong misc QH301-705.5 misc quercetin misc fruit and vegetable extracts misc antioxidant misc barrier function misc anti-inflammatory misc Biology (General) Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells |
authorStr |
Xiaoxiao Gong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)355690365 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
14673045 |
topic_title |
QH301-705.5 Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells quercetin fruit and vegetable extracts antioxidant barrier function anti-inflammatory |
topic |
misc QH301-705.5 misc quercetin misc fruit and vegetable extracts misc antioxidant misc barrier function misc anti-inflammatory misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc quercetin misc fruit and vegetable extracts misc antioxidant misc barrier function misc anti-inflammatory misc Biology (General) |
topic_browse |
misc QH301-705.5 misc quercetin misc fruit and vegetable extracts misc antioxidant misc barrier function misc anti-inflammatory misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Current Issues in Molecular Biology |
hierarchy_parent_id |
355690365 |
hierarchy_top_title |
Current Issues in Molecular Biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)355690365 (DE-600)2090836-2 |
title |
Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells |
ctrlnum |
(DE-627)DOAJ011153695 (DE-599)DOAJ4d68a12afad14e30b697a62cdadcef36 |
title_full |
Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells |
author_sort |
Xiaoxiao Gong |
journal |
Current Issues in Molecular Biology |
journalStr |
Current Issues in Molecular Biology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
5234 |
author_browse |
Xiaoxiao Gong Yinghao Huang Qianbo Ma Maocheng Jiang Kang Zhan Guoqi Zhao |
container_volume |
44 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaoxiao Gong |
doi_str_mv |
10.3390/cimb44110356 |
author2-role |
verfasserin |
title_sort |
quercetin alleviates lipopolysaccharide-induced cell damage and inflammation via regulation of the tlr4/nf-κb pathway in bovine intestinal epithelial cells |
callnumber |
QH301-705.5 |
title_auth |
Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells |
abstract |
Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release. |
abstractGer |
Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release. |
abstract_unstemmed |
Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells |
url |
https://doi.org/10.3390/cimb44110356 https://doaj.org/article/4d68a12afad14e30b697a62cdadcef36 https://www.mdpi.com/1467-3045/44/11/356 https://doaj.org/toc/1467-3037 https://doaj.org/toc/1467-3045 |
remote_bool |
true |
author2 |
Yinghao Huang Qianbo Ma Maocheng Jiang Kang Zhan Guoqi Zhao |
author2Str |
Yinghao Huang Qianbo Ma Maocheng Jiang Kang Zhan Guoqi Zhao |
ppnlink |
355690365 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/cimb44110356 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T18:46:46.307Z |
_version_ |
1803584700477865984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011153695</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414172758.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cimb44110356</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011153695</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4d68a12afad14e30b697a62cdadcef36</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoxiao Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quercetin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit and vegetable extracts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antioxidant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">barrier function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-inflammatory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yinghao Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qianbo Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maocheng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kang Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoqi Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Current Issues in Molecular Biology</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">44(2022), 11, Seite 5234-5246</subfield><subfield code="w">(DE-627)355690365</subfield><subfield code="w">(DE-600)2090836-2</subfield><subfield code="x">14673045</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:5234-5246</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cimb44110356</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4d68a12afad14e30b697a62cdadcef36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1467-3045/44/11/356</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1467-3037</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1467-3045</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2022</subfield><subfield code="e">11</subfield><subfield code="h">5234-5246</subfield></datafield></record></collection>
|
score |
7.402011 |