Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province
The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan...
Ausführliche Beschreibung
Autor*in: |
Jing Chen [verfasserIn] Yujian Guo [verfasserIn] Xinwen Hu [verfasserIn] Kaibing Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Plant Science - Frontiers Media S.A., 2011, 12(2022) |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fpls.2021.798581 |
---|
Katalog-ID: |
DOAJ011526548 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ011526548 | ||
003 | DE-627 | ||
005 | 20230310034712.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fpls.2021.798581 |2 doi | |
035 | |a (DE-627)DOAJ011526548 | ||
035 | |a (DE-599)DOAJb7459167f0284a328d1c8c930ab41bd0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SB1-1110 | |
100 | 0 | |a Jing Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences. | ||
650 | 4 | |a oil-tea camellia | |
650 | 4 | |a cpDNA | |
650 | 4 | |a divergence hotspots | |
650 | 4 | |a SSRs | |
650 | 4 | |a phylogenetic tree | |
653 | 0 | |a Plant culture | |
700 | 0 | |a Jing Chen |e verfasserin |4 aut | |
700 | 0 | |a Yujian Guo |e verfasserin |4 aut | |
700 | 0 | |a Yujian Guo |e verfasserin |4 aut | |
700 | 0 | |a Xinwen Hu |e verfasserin |4 aut | |
700 | 0 | |a Xinwen Hu |e verfasserin |4 aut | |
700 | 0 | |a Kaibing Zhou |e verfasserin |4 aut | |
700 | 0 | |a Kaibing Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Plant Science |d Frontiers Media S.A., 2011 |g 12(2022) |w (DE-627)662359240 |w (DE-600)2613694-6 |x 1664462X |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fpls.2021.798581 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b7459167f0284a328d1c8c930ab41bd0 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fpls.2021.798581/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1664-462X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |
author_variant |
j c jc j c jc y g yg y g yg x h xh x h xh k z kz k z kz |
---|---|
matchkey_str |
article:1664462X:2022----::oprsnfhclrpateoeeuneo1olecmlismlsnietfctooaudtrieol |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
SB |
publishDate |
2022 |
allfields |
10.3389/fpls.2021.798581 doi (DE-627)DOAJ011526548 (DE-599)DOAJb7459167f0284a328d1c8c930ab41bd0 DE-627 ger DE-627 rakwb eng SB1-1110 Jing Chen verfasserin aut Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences. oil-tea camellia cpDNA divergence hotspots SSRs phylogenetic tree Plant culture Jing Chen verfasserin aut Yujian Guo verfasserin aut Yujian Guo verfasserin aut Xinwen Hu verfasserin aut Xinwen Hu verfasserin aut Kaibing Zhou verfasserin aut Kaibing Zhou verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 12(2022) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:12 year:2022 https://doi.org/10.3389/fpls.2021.798581 kostenfrei https://doaj.org/article/b7459167f0284a328d1c8c930ab41bd0 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2021.798581/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
spelling |
10.3389/fpls.2021.798581 doi (DE-627)DOAJ011526548 (DE-599)DOAJb7459167f0284a328d1c8c930ab41bd0 DE-627 ger DE-627 rakwb eng SB1-1110 Jing Chen verfasserin aut Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences. oil-tea camellia cpDNA divergence hotspots SSRs phylogenetic tree Plant culture Jing Chen verfasserin aut Yujian Guo verfasserin aut Yujian Guo verfasserin aut Xinwen Hu verfasserin aut Xinwen Hu verfasserin aut Kaibing Zhou verfasserin aut Kaibing Zhou verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 12(2022) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:12 year:2022 https://doi.org/10.3389/fpls.2021.798581 kostenfrei https://doaj.org/article/b7459167f0284a328d1c8c930ab41bd0 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2021.798581/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
allfields_unstemmed |
10.3389/fpls.2021.798581 doi (DE-627)DOAJ011526548 (DE-599)DOAJb7459167f0284a328d1c8c930ab41bd0 DE-627 ger DE-627 rakwb eng SB1-1110 Jing Chen verfasserin aut Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences. oil-tea camellia cpDNA divergence hotspots SSRs phylogenetic tree Plant culture Jing Chen verfasserin aut Yujian Guo verfasserin aut Yujian Guo verfasserin aut Xinwen Hu verfasserin aut Xinwen Hu verfasserin aut Kaibing Zhou verfasserin aut Kaibing Zhou verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 12(2022) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:12 year:2022 https://doi.org/10.3389/fpls.2021.798581 kostenfrei https://doaj.org/article/b7459167f0284a328d1c8c930ab41bd0 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2021.798581/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
allfieldsGer |
10.3389/fpls.2021.798581 doi (DE-627)DOAJ011526548 (DE-599)DOAJb7459167f0284a328d1c8c930ab41bd0 DE-627 ger DE-627 rakwb eng SB1-1110 Jing Chen verfasserin aut Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences. oil-tea camellia cpDNA divergence hotspots SSRs phylogenetic tree Plant culture Jing Chen verfasserin aut Yujian Guo verfasserin aut Yujian Guo verfasserin aut Xinwen Hu verfasserin aut Xinwen Hu verfasserin aut Kaibing Zhou verfasserin aut Kaibing Zhou verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 12(2022) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:12 year:2022 https://doi.org/10.3389/fpls.2021.798581 kostenfrei https://doaj.org/article/b7459167f0284a328d1c8c930ab41bd0 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2021.798581/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
allfieldsSound |
10.3389/fpls.2021.798581 doi (DE-627)DOAJ011526548 (DE-599)DOAJb7459167f0284a328d1c8c930ab41bd0 DE-627 ger DE-627 rakwb eng SB1-1110 Jing Chen verfasserin aut Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences. oil-tea camellia cpDNA divergence hotspots SSRs phylogenetic tree Plant culture Jing Chen verfasserin aut Yujian Guo verfasserin aut Yujian Guo verfasserin aut Xinwen Hu verfasserin aut Xinwen Hu verfasserin aut Kaibing Zhou verfasserin aut Kaibing Zhou verfasserin aut In Frontiers in Plant Science Frontiers Media S.A., 2011 12(2022) (DE-627)662359240 (DE-600)2613694-6 1664462X nnns volume:12 year:2022 https://doi.org/10.3389/fpls.2021.798581 kostenfrei https://doaj.org/article/b7459167f0284a328d1c8c930ab41bd0 kostenfrei https://www.frontiersin.org/articles/10.3389/fpls.2021.798581/full kostenfrei https://doaj.org/toc/1664-462X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
language |
English |
source |
In Frontiers in Plant Science 12(2022) volume:12 year:2022 |
sourceStr |
In Frontiers in Plant Science 12(2022) volume:12 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
oil-tea camellia cpDNA divergence hotspots SSRs phylogenetic tree Plant culture |
isfreeaccess_bool |
true |
container_title |
Frontiers in Plant Science |
authorswithroles_txt_mv |
Jing Chen @@aut@@ Yujian Guo @@aut@@ Xinwen Hu @@aut@@ Kaibing Zhou @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
662359240 |
id |
DOAJ011526548 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011526548</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310034712.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fpls.2021.798581</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011526548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb7459167f0284a328d1c8c930ab41bd0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jing Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oil-tea camellia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cpDNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">divergence hotspots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SSRs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phylogenetic tree</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yujian Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yujian Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinwen Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinwen Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaibing Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaibing Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Plant Science</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">12(2022)</subfield><subfield code="w">(DE-627)662359240</subfield><subfield code="w">(DE-600)2613694-6</subfield><subfield code="x">1664462X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fpls.2021.798581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b7459167f0284a328d1c8c930ab41bd0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fpls.2021.798581/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-462X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Jing Chen |
spellingShingle |
Jing Chen misc SB1-1110 misc oil-tea camellia misc cpDNA misc divergence hotspots misc SSRs misc phylogenetic tree misc Plant culture Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province |
authorStr |
Jing Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)662359240 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SB1-1110 |
illustrated |
Not Illustrated |
issn |
1664462X |
topic_title |
SB1-1110 Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province oil-tea camellia cpDNA divergence hotspots SSRs phylogenetic tree |
topic |
misc SB1-1110 misc oil-tea camellia misc cpDNA misc divergence hotspots misc SSRs misc phylogenetic tree misc Plant culture |
topic_unstemmed |
misc SB1-1110 misc oil-tea camellia misc cpDNA misc divergence hotspots misc SSRs misc phylogenetic tree misc Plant culture |
topic_browse |
misc SB1-1110 misc oil-tea camellia misc cpDNA misc divergence hotspots misc SSRs misc phylogenetic tree misc Plant culture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Plant Science |
hierarchy_parent_id |
662359240 |
hierarchy_top_title |
Frontiers in Plant Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)662359240 (DE-600)2613694-6 |
title |
Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province |
ctrlnum |
(DE-627)DOAJ011526548 (DE-599)DOAJb7459167f0284a328d1c8c930ab41bd0 |
title_full |
Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province |
author_sort |
Jing Chen |
journal |
Frontiers in Plant Science |
journalStr |
Frontiers in Plant Science |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jing Chen Yujian Guo Xinwen Hu Kaibing Zhou |
container_volume |
12 |
class |
SB1-1110 |
format_se |
Elektronische Aufsätze |
author-letter |
Jing Chen |
doi_str_mv |
10.3389/fpls.2021.798581 |
author2-role |
verfasserin |
title_sort |
comparison of the chloroplast genome sequences of 13 oil-tea camellia samples and identification of an undetermined oil-tea camellia species from hainan province |
callnumber |
SB1-1110 |
title_auth |
Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province |
abstract |
The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences. |
abstractGer |
The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences. |
abstract_unstemmed |
The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province |
url |
https://doi.org/10.3389/fpls.2021.798581 https://doaj.org/article/b7459167f0284a328d1c8c930ab41bd0 https://www.frontiersin.org/articles/10.3389/fpls.2021.798581/full https://doaj.org/toc/1664-462X |
remote_bool |
true |
author2 |
Jing Chen Yujian Guo Xinwen Hu Kaibing Zhou |
author2Str |
Jing Chen Yujian Guo Xinwen Hu Kaibing Zhou |
ppnlink |
662359240 |
callnumber-subject |
SB - Plant Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fpls.2021.798581 |
callnumber-a |
SB1-1110 |
up_date |
2024-07-03T20:48:28.455Z |
_version_ |
1803592357333958656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011526548</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310034712.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fpls.2021.798581</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011526548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb7459167f0284a328d1c8c930ab41bd0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jing Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as “barcodes” or “identity cards” for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oil-tea camellia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cpDNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">divergence hotspots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SSRs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phylogenetic tree</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yujian Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yujian Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinwen Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinwen Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaibing Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaibing Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Plant Science</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">12(2022)</subfield><subfield code="w">(DE-627)662359240</subfield><subfield code="w">(DE-600)2613694-6</subfield><subfield code="x">1664462X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fpls.2021.798581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b7459167f0284a328d1c8c930ab41bd0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fpls.2021.798581/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-462X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.4007015 |