Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew
The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a...
Ausführliche Beschreibung
Autor*in: |
Ricciardi Valentina [verfasserIn] Marcianò Demetrio [verfasserIn] Sargolzaei Maryam [verfasserIn] Marrone Fassolo Elena [verfasserIn] Fracassetti Daniela [verfasserIn] Brilli Matteo [verfasserIn] Moser Mirko [verfasserIn] Vahid Shariati J. [verfasserIn] Tavakole Elahe [verfasserIn] Maddalena Giuliana [verfasserIn] Passera Alessandro [verfasserIn] Casati Paola [verfasserIn] Pindo Massimo [verfasserIn] Cestaro Alessandro [verfasserIn] Costa Alex [verfasserIn] Bonza Maria Cristina [verfasserIn] Maghradze David [verfasserIn] Tirelli Antonio [verfasserIn] Failla Osvaldo [verfasserIn] Bianco Piero Attilio [verfasserIn] Quaglino Fabio [verfasserIn] Toffolatti Silvia Laura [verfasserIn] De Lorenzis Gabriella [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: BIO Web of Conferences - EDP Sciences, 2012, 44, p 04002(2022) |
---|---|
Übergeordnetes Werk: |
volume:44, p 04002 ; year:2022 |
Links: |
---|
DOI / URN: |
10.1051/bioconf/20224404002 |
---|
Katalog-ID: |
DOAJ011563427 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ011563427 | ||
003 | DE-627 | ||
005 | 20230310034852.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/bioconf/20224404002 |2 doi | |
035 | |a (DE-627)DOAJ011563427 | ||
035 | |a (DE-599)DOAJ93aa43313c7b4594a16b981ab3b78885 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a QR1-502 | |
050 | 0 | |a QP1-981 | |
050 | 0 | |a QL1-991 | |
100 | 0 | |a Ricciardi Valentina |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease. | ||
653 | 0 | |a Microbiology | |
653 | 0 | |a Physiology | |
653 | 0 | |a Zoology | |
700 | 0 | |a Marcianò Demetrio |e verfasserin |4 aut | |
700 | 0 | |a Sargolzaei Maryam |e verfasserin |4 aut | |
700 | 0 | |a Marrone Fassolo Elena |e verfasserin |4 aut | |
700 | 0 | |a Fracassetti Daniela |e verfasserin |4 aut | |
700 | 0 | |a Brilli Matteo |e verfasserin |4 aut | |
700 | 0 | |a Moser Mirko |e verfasserin |4 aut | |
700 | 0 | |a Vahid Shariati J. |e verfasserin |4 aut | |
700 | 0 | |a Tavakole Elahe |e verfasserin |4 aut | |
700 | 0 | |a Maddalena Giuliana |e verfasserin |4 aut | |
700 | 0 | |a Passera Alessandro |e verfasserin |4 aut | |
700 | 0 | |a Casati Paola |e verfasserin |4 aut | |
700 | 0 | |a Pindo Massimo |e verfasserin |4 aut | |
700 | 0 | |a Cestaro Alessandro |e verfasserin |4 aut | |
700 | 0 | |a Costa Alex |e verfasserin |4 aut | |
700 | 0 | |a Bonza Maria Cristina |e verfasserin |4 aut | |
700 | 0 | |a Maghradze David |e verfasserin |4 aut | |
700 | 0 | |a Tirelli Antonio |e verfasserin |4 aut | |
700 | 0 | |a Failla Osvaldo |e verfasserin |4 aut | |
700 | 0 | |a Bianco Piero Attilio |e verfasserin |4 aut | |
700 | 0 | |a Quaglino Fabio |e verfasserin |4 aut | |
700 | 0 | |a Toffolatti Silvia Laura |e verfasserin |4 aut | |
700 | 0 | |a De Lorenzis Gabriella |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BIO Web of Conferences |d EDP Sciences, 2012 |g 44, p 04002(2022) |w (DE-627)720164907 |w (DE-600)2673408-4 |x 21174458 |7 nnns |
773 | 1 | 8 | |g volume:44, p 04002 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.1051/bioconf/20224404002 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/93aa43313c7b4594a16b981ab3b78885 |z kostenfrei |
856 | 4 | 0 | |u https://www.bio-conferences.org/articles/bioconf/pdf/2022/03/bioconf_conavi2022_04002.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2117-4458 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 44, p 04002 |j 2022 |
author_variant |
r v rv m d md s m sm m f e mfe f d fd b m bm m m mm v s j vsj t e te m g mg p a pa c p cp p m pm c a ca c a ca b m c bmc m d md t a ta f o fo b p a bpa q f qf t s l tsl d l g dlg |
---|---|
matchkey_str |
article:21174458:2022----::iscighssetbltrssacmcaimfiivnfrfrhf |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QR |
publishDate |
2022 |
allfields |
10.1051/bioconf/20224404002 doi (DE-627)DOAJ011563427 (DE-599)DOAJ93aa43313c7b4594a16b981ab3b78885 DE-627 ger DE-627 rakwb eng fre QR1-502 QP1-981 QL1-991 Ricciardi Valentina verfasserin aut Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease. Microbiology Physiology Zoology Marcianò Demetrio verfasserin aut Sargolzaei Maryam verfasserin aut Marrone Fassolo Elena verfasserin aut Fracassetti Daniela verfasserin aut Brilli Matteo verfasserin aut Moser Mirko verfasserin aut Vahid Shariati J. verfasserin aut Tavakole Elahe verfasserin aut Maddalena Giuliana verfasserin aut Passera Alessandro verfasserin aut Casati Paola verfasserin aut Pindo Massimo verfasserin aut Cestaro Alessandro verfasserin aut Costa Alex verfasserin aut Bonza Maria Cristina verfasserin aut Maghradze David verfasserin aut Tirelli Antonio verfasserin aut Failla Osvaldo verfasserin aut Bianco Piero Attilio verfasserin aut Quaglino Fabio verfasserin aut Toffolatti Silvia Laura verfasserin aut De Lorenzis Gabriella verfasserin aut In BIO Web of Conferences EDP Sciences, 2012 44, p 04002(2022) (DE-627)720164907 (DE-600)2673408-4 21174458 nnns volume:44, p 04002 year:2022 https://doi.org/10.1051/bioconf/20224404002 kostenfrei https://doaj.org/article/93aa43313c7b4594a16b981ab3b78885 kostenfrei https://www.bio-conferences.org/articles/bioconf/pdf/2022/03/bioconf_conavi2022_04002.pdf kostenfrei https://doaj.org/toc/2117-4458 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44, p 04002 2022 |
spelling |
10.1051/bioconf/20224404002 doi (DE-627)DOAJ011563427 (DE-599)DOAJ93aa43313c7b4594a16b981ab3b78885 DE-627 ger DE-627 rakwb eng fre QR1-502 QP1-981 QL1-991 Ricciardi Valentina verfasserin aut Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease. Microbiology Physiology Zoology Marcianò Demetrio verfasserin aut Sargolzaei Maryam verfasserin aut Marrone Fassolo Elena verfasserin aut Fracassetti Daniela verfasserin aut Brilli Matteo verfasserin aut Moser Mirko verfasserin aut Vahid Shariati J. verfasserin aut Tavakole Elahe verfasserin aut Maddalena Giuliana verfasserin aut Passera Alessandro verfasserin aut Casati Paola verfasserin aut Pindo Massimo verfasserin aut Cestaro Alessandro verfasserin aut Costa Alex verfasserin aut Bonza Maria Cristina verfasserin aut Maghradze David verfasserin aut Tirelli Antonio verfasserin aut Failla Osvaldo verfasserin aut Bianco Piero Attilio verfasserin aut Quaglino Fabio verfasserin aut Toffolatti Silvia Laura verfasserin aut De Lorenzis Gabriella verfasserin aut In BIO Web of Conferences EDP Sciences, 2012 44, p 04002(2022) (DE-627)720164907 (DE-600)2673408-4 21174458 nnns volume:44, p 04002 year:2022 https://doi.org/10.1051/bioconf/20224404002 kostenfrei https://doaj.org/article/93aa43313c7b4594a16b981ab3b78885 kostenfrei https://www.bio-conferences.org/articles/bioconf/pdf/2022/03/bioconf_conavi2022_04002.pdf kostenfrei https://doaj.org/toc/2117-4458 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44, p 04002 2022 |
allfields_unstemmed |
10.1051/bioconf/20224404002 doi (DE-627)DOAJ011563427 (DE-599)DOAJ93aa43313c7b4594a16b981ab3b78885 DE-627 ger DE-627 rakwb eng fre QR1-502 QP1-981 QL1-991 Ricciardi Valentina verfasserin aut Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease. Microbiology Physiology Zoology Marcianò Demetrio verfasserin aut Sargolzaei Maryam verfasserin aut Marrone Fassolo Elena verfasserin aut Fracassetti Daniela verfasserin aut Brilli Matteo verfasserin aut Moser Mirko verfasserin aut Vahid Shariati J. verfasserin aut Tavakole Elahe verfasserin aut Maddalena Giuliana verfasserin aut Passera Alessandro verfasserin aut Casati Paola verfasserin aut Pindo Massimo verfasserin aut Cestaro Alessandro verfasserin aut Costa Alex verfasserin aut Bonza Maria Cristina verfasserin aut Maghradze David verfasserin aut Tirelli Antonio verfasserin aut Failla Osvaldo verfasserin aut Bianco Piero Attilio verfasserin aut Quaglino Fabio verfasserin aut Toffolatti Silvia Laura verfasserin aut De Lorenzis Gabriella verfasserin aut In BIO Web of Conferences EDP Sciences, 2012 44, p 04002(2022) (DE-627)720164907 (DE-600)2673408-4 21174458 nnns volume:44, p 04002 year:2022 https://doi.org/10.1051/bioconf/20224404002 kostenfrei https://doaj.org/article/93aa43313c7b4594a16b981ab3b78885 kostenfrei https://www.bio-conferences.org/articles/bioconf/pdf/2022/03/bioconf_conavi2022_04002.pdf kostenfrei https://doaj.org/toc/2117-4458 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44, p 04002 2022 |
allfieldsGer |
10.1051/bioconf/20224404002 doi (DE-627)DOAJ011563427 (DE-599)DOAJ93aa43313c7b4594a16b981ab3b78885 DE-627 ger DE-627 rakwb eng fre QR1-502 QP1-981 QL1-991 Ricciardi Valentina verfasserin aut Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease. Microbiology Physiology Zoology Marcianò Demetrio verfasserin aut Sargolzaei Maryam verfasserin aut Marrone Fassolo Elena verfasserin aut Fracassetti Daniela verfasserin aut Brilli Matteo verfasserin aut Moser Mirko verfasserin aut Vahid Shariati J. verfasserin aut Tavakole Elahe verfasserin aut Maddalena Giuliana verfasserin aut Passera Alessandro verfasserin aut Casati Paola verfasserin aut Pindo Massimo verfasserin aut Cestaro Alessandro verfasserin aut Costa Alex verfasserin aut Bonza Maria Cristina verfasserin aut Maghradze David verfasserin aut Tirelli Antonio verfasserin aut Failla Osvaldo verfasserin aut Bianco Piero Attilio verfasserin aut Quaglino Fabio verfasserin aut Toffolatti Silvia Laura verfasserin aut De Lorenzis Gabriella verfasserin aut In BIO Web of Conferences EDP Sciences, 2012 44, p 04002(2022) (DE-627)720164907 (DE-600)2673408-4 21174458 nnns volume:44, p 04002 year:2022 https://doi.org/10.1051/bioconf/20224404002 kostenfrei https://doaj.org/article/93aa43313c7b4594a16b981ab3b78885 kostenfrei https://www.bio-conferences.org/articles/bioconf/pdf/2022/03/bioconf_conavi2022_04002.pdf kostenfrei https://doaj.org/toc/2117-4458 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44, p 04002 2022 |
allfieldsSound |
10.1051/bioconf/20224404002 doi (DE-627)DOAJ011563427 (DE-599)DOAJ93aa43313c7b4594a16b981ab3b78885 DE-627 ger DE-627 rakwb eng fre QR1-502 QP1-981 QL1-991 Ricciardi Valentina verfasserin aut Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease. Microbiology Physiology Zoology Marcianò Demetrio verfasserin aut Sargolzaei Maryam verfasserin aut Marrone Fassolo Elena verfasserin aut Fracassetti Daniela verfasserin aut Brilli Matteo verfasserin aut Moser Mirko verfasserin aut Vahid Shariati J. verfasserin aut Tavakole Elahe verfasserin aut Maddalena Giuliana verfasserin aut Passera Alessandro verfasserin aut Casati Paola verfasserin aut Pindo Massimo verfasserin aut Cestaro Alessandro verfasserin aut Costa Alex verfasserin aut Bonza Maria Cristina verfasserin aut Maghradze David verfasserin aut Tirelli Antonio verfasserin aut Failla Osvaldo verfasserin aut Bianco Piero Attilio verfasserin aut Quaglino Fabio verfasserin aut Toffolatti Silvia Laura verfasserin aut De Lorenzis Gabriella verfasserin aut In BIO Web of Conferences EDP Sciences, 2012 44, p 04002(2022) (DE-627)720164907 (DE-600)2673408-4 21174458 nnns volume:44, p 04002 year:2022 https://doi.org/10.1051/bioconf/20224404002 kostenfrei https://doaj.org/article/93aa43313c7b4594a16b981ab3b78885 kostenfrei https://www.bio-conferences.org/articles/bioconf/pdf/2022/03/bioconf_conavi2022_04002.pdf kostenfrei https://doaj.org/toc/2117-4458 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44, p 04002 2022 |
language |
English French |
source |
In BIO Web of Conferences 44, p 04002(2022) volume:44, p 04002 year:2022 |
sourceStr |
In BIO Web of Conferences 44, p 04002(2022) volume:44, p 04002 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microbiology Physiology Zoology |
isfreeaccess_bool |
true |
container_title |
BIO Web of Conferences |
authorswithroles_txt_mv |
Ricciardi Valentina @@aut@@ Marcianò Demetrio @@aut@@ Sargolzaei Maryam @@aut@@ Marrone Fassolo Elena @@aut@@ Fracassetti Daniela @@aut@@ Brilli Matteo @@aut@@ Moser Mirko @@aut@@ Vahid Shariati J. @@aut@@ Tavakole Elahe @@aut@@ Maddalena Giuliana @@aut@@ Passera Alessandro @@aut@@ Casati Paola @@aut@@ Pindo Massimo @@aut@@ Cestaro Alessandro @@aut@@ Costa Alex @@aut@@ Bonza Maria Cristina @@aut@@ Maghradze David @@aut@@ Tirelli Antonio @@aut@@ Failla Osvaldo @@aut@@ Bianco Piero Attilio @@aut@@ Quaglino Fabio @@aut@@ Toffolatti Silvia Laura @@aut@@ De Lorenzis Gabriella @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
720164907 |
id |
DOAJ011563427 |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011563427</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310034852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/bioconf/20224404002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011563427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ93aa43313c7b4594a16b981ab3b78885</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP1-981</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QL1-991</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ricciardi Valentina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physiology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Zoology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcianò Demetrio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sargolzaei Maryam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marrone Fassolo Elena</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fracassetti Daniela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brilli Matteo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Moser Mirko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vahid Shariati J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tavakole Elahe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maddalena Giuliana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Passera Alessandro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Casati Paola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pindo Massimo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cestaro Alessandro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Costa Alex</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bonza Maria Cristina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maghradze David</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tirelli Antonio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Failla Osvaldo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bianco Piero Attilio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quaglino Fabio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toffolatti Silvia Laura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">De Lorenzis Gabriella</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BIO Web of Conferences</subfield><subfield code="d">EDP Sciences, 2012</subfield><subfield code="g">44, p 04002(2022)</subfield><subfield code="w">(DE-627)720164907</subfield><subfield code="w">(DE-600)2673408-4</subfield><subfield code="x">21174458</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44, p 04002</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/bioconf/20224404002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/93aa43313c7b4594a16b981ab3b78885</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.bio-conferences.org/articles/bioconf/pdf/2022/03/bioconf_conavi2022_04002.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2117-4458</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44, p 04002</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ricciardi Valentina |
spellingShingle |
Ricciardi Valentina misc QR1-502 misc QP1-981 misc QL1-991 misc Microbiology misc Physiology misc Zoology Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew |
authorStr |
Ricciardi Valentina |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)720164907 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
21174458 |
topic_title |
QR1-502 QP1-981 QL1-991 Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew |
topic |
misc QR1-502 misc QP1-981 misc QL1-991 misc Microbiology misc Physiology misc Zoology |
topic_unstemmed |
misc QR1-502 misc QP1-981 misc QL1-991 misc Microbiology misc Physiology misc Zoology |
topic_browse |
misc QR1-502 misc QP1-981 misc QL1-991 misc Microbiology misc Physiology misc Zoology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BIO Web of Conferences |
hierarchy_parent_id |
720164907 |
hierarchy_top_title |
BIO Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)720164907 (DE-600)2673408-4 |
title |
Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew |
ctrlnum |
(DE-627)DOAJ011563427 (DE-599)DOAJ93aa43313c7b4594a16b981ab3b78885 |
title_full |
Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew |
author_sort |
Ricciardi Valentina |
journal |
BIO Web of Conferences |
journalStr |
BIO Web of Conferences |
callnumber-first-code |
Q |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ricciardi Valentina Marcianò Demetrio Sargolzaei Maryam Marrone Fassolo Elena Fracassetti Daniela Brilli Matteo Moser Mirko Vahid Shariati J. Tavakole Elahe Maddalena Giuliana Passera Alessandro Casati Paola Pindo Massimo Cestaro Alessandro Costa Alex Bonza Maria Cristina Maghradze David Tirelli Antonio Failla Osvaldo Bianco Piero Attilio Quaglino Fabio Toffolatti Silvia Laura De Lorenzis Gabriella |
container_volume |
44, p 04002 |
class |
QR1-502 QP1-981 QL1-991 |
format_se |
Elektronische Aufsätze |
author-letter |
Ricciardi Valentina |
doi_str_mv |
10.1051/bioconf/20224404002 |
author2-role |
verfasserin |
title_sort |
dissecting the susceptibility/resistance mechanism of vitis vinifera for the future control of downy mildew |
callnumber |
QR1-502 |
title_auth |
Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew |
abstract |
The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease. |
abstractGer |
The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease. |
abstract_unstemmed |
The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew |
url |
https://doi.org/10.1051/bioconf/20224404002 https://doaj.org/article/93aa43313c7b4594a16b981ab3b78885 https://www.bio-conferences.org/articles/bioconf/pdf/2022/03/bioconf_conavi2022_04002.pdf https://doaj.org/toc/2117-4458 |
remote_bool |
true |
author2 |
Marcianò Demetrio Sargolzaei Maryam Marrone Fassolo Elena Fracassetti Daniela Brilli Matteo Moser Mirko Vahid Shariati J. Tavakole Elahe Maddalena Giuliana Passera Alessandro Casati Paola Pindo Massimo Cestaro Alessandro Costa Alex Bonza Maria Cristina Maghradze David Tirelli Antonio Failla Osvaldo Bianco Piero Attilio Quaglino Fabio Toffolatti Silvia Laura De Lorenzis Gabriella |
author2Str |
Marcianò Demetrio Sargolzaei Maryam Marrone Fassolo Elena Fracassetti Daniela Brilli Matteo Moser Mirko Vahid Shariati J. Tavakole Elahe Maddalena Giuliana Passera Alessandro Casati Paola Pindo Massimo Cestaro Alessandro Costa Alex Bonza Maria Cristina Maghradze David Tirelli Antonio Failla Osvaldo Bianco Piero Attilio Quaglino Fabio Toffolatti Silvia Laura De Lorenzis Gabriella |
ppnlink |
720164907 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/bioconf/20224404002 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T21:00:34.841Z |
_version_ |
1803593119005933569 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011563427</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310034852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/bioconf/20224404002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011563427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ93aa43313c7b4594a16b981ab3b78885</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP1-981</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QL1-991</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ricciardi Valentina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physiology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Zoology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcianò Demetrio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sargolzaei Maryam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marrone Fassolo Elena</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fracassetti Daniela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brilli Matteo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Moser Mirko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vahid Shariati J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tavakole Elahe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maddalena Giuliana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Passera Alessandro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Casati Paola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pindo Massimo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cestaro Alessandro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Costa Alex</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bonza Maria Cristina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maghradze David</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tirelli Antonio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Failla Osvaldo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bianco Piero Attilio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quaglino Fabio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toffolatti Silvia Laura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">De Lorenzis Gabriella</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BIO Web of Conferences</subfield><subfield code="d">EDP Sciences, 2012</subfield><subfield code="g">44, p 04002(2022)</subfield><subfield code="w">(DE-627)720164907</subfield><subfield code="w">(DE-600)2673408-4</subfield><subfield code="x">21174458</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44, p 04002</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/bioconf/20224404002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/93aa43313c7b4594a16b981ab3b78885</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.bio-conferences.org/articles/bioconf/pdf/2022/03/bioconf_conavi2022_04002.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2117-4458</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44, p 04002</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.4011335 |