Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses
Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a p...
Ausführliche Beschreibung
Autor*in: |
Xingwang Zhao [verfasserIn] Lan Ge [verfasserIn] Juan Wang [verfasserIn] Zhiqiang Song [verfasserIn] Bing Ni [verfasserIn] Xiaochong He [verfasserIn] Zhihua Ruan [verfasserIn] Yi You [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Immunology - Frontiers Media S.A., 2011, 12(2022) |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fimmu.2021.752736 |
---|
Katalog-ID: |
DOAJ011566116 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ011566116 | ||
003 | DE-627 | ||
005 | 20230310034900.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fimmu.2021.752736 |2 doi | |
035 | |a (DE-627)DOAJ011566116 | ||
035 | |a (DE-599)DOAJ233f0f69907042c3aedc15e118e90871 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC581-607 | |
100 | 0 | |a Xingwang Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies. | ||
650 | 4 | |a systemic lupus erythematosus | |
650 | 4 | |a m6A | |
650 | 4 | |a immune | |
650 | 4 | |a immune cell infiltrations | |
650 | 4 | |a bioinformatic analyses | |
653 | 0 | |a Immunologic diseases. Allergy | |
700 | 0 | |a Lan Ge |e verfasserin |4 aut | |
700 | 0 | |a Juan Wang |e verfasserin |4 aut | |
700 | 0 | |a Zhiqiang Song |e verfasserin |4 aut | |
700 | 0 | |a Bing Ni |e verfasserin |4 aut | |
700 | 0 | |a Xiaochong He |e verfasserin |4 aut | |
700 | 0 | |a Zhihua Ruan |e verfasserin |4 aut | |
700 | 0 | |a Yi You |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Immunology |d Frontiers Media S.A., 2011 |g 12(2022) |w (DE-627)657998354 |w (DE-600)2606827-8 |x 16643224 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fimmu.2021.752736 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/233f0f69907042c3aedc15e118e90871 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fimmu.2021.752736/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1664-3224 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |
author_variant |
x z xz l g lg j w jw z s zs b n bn x h xh z r zr y y yy |
---|---|
matchkey_str |
article:16643224:2022----::xlrtooptnilnertdoesf6ehldnsnimntisseilpsrte |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
RC |
publishDate |
2022 |
allfields |
10.3389/fimmu.2021.752736 doi (DE-627)DOAJ011566116 (DE-599)DOAJ233f0f69907042c3aedc15e118e90871 DE-627 ger DE-627 rakwb eng RC581-607 Xingwang Zhao verfasserin aut Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies. systemic lupus erythematosus m6A immune immune cell infiltrations bioinformatic analyses Immunologic diseases. Allergy Lan Ge verfasserin aut Juan Wang verfasserin aut Zhiqiang Song verfasserin aut Bing Ni verfasserin aut Xiaochong He verfasserin aut Zhihua Ruan verfasserin aut Yi You verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 12(2022) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:12 year:2022 https://doi.org/10.3389/fimmu.2021.752736 kostenfrei https://doaj.org/article/233f0f69907042c3aedc15e118e90871 kostenfrei https://www.frontiersin.org/articles/10.3389/fimmu.2021.752736/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
spelling |
10.3389/fimmu.2021.752736 doi (DE-627)DOAJ011566116 (DE-599)DOAJ233f0f69907042c3aedc15e118e90871 DE-627 ger DE-627 rakwb eng RC581-607 Xingwang Zhao verfasserin aut Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies. systemic lupus erythematosus m6A immune immune cell infiltrations bioinformatic analyses Immunologic diseases. Allergy Lan Ge verfasserin aut Juan Wang verfasserin aut Zhiqiang Song verfasserin aut Bing Ni verfasserin aut Xiaochong He verfasserin aut Zhihua Ruan verfasserin aut Yi You verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 12(2022) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:12 year:2022 https://doi.org/10.3389/fimmu.2021.752736 kostenfrei https://doaj.org/article/233f0f69907042c3aedc15e118e90871 kostenfrei https://www.frontiersin.org/articles/10.3389/fimmu.2021.752736/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
allfields_unstemmed |
10.3389/fimmu.2021.752736 doi (DE-627)DOAJ011566116 (DE-599)DOAJ233f0f69907042c3aedc15e118e90871 DE-627 ger DE-627 rakwb eng RC581-607 Xingwang Zhao verfasserin aut Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies. systemic lupus erythematosus m6A immune immune cell infiltrations bioinformatic analyses Immunologic diseases. Allergy Lan Ge verfasserin aut Juan Wang verfasserin aut Zhiqiang Song verfasserin aut Bing Ni verfasserin aut Xiaochong He verfasserin aut Zhihua Ruan verfasserin aut Yi You verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 12(2022) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:12 year:2022 https://doi.org/10.3389/fimmu.2021.752736 kostenfrei https://doaj.org/article/233f0f69907042c3aedc15e118e90871 kostenfrei https://www.frontiersin.org/articles/10.3389/fimmu.2021.752736/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
allfieldsGer |
10.3389/fimmu.2021.752736 doi (DE-627)DOAJ011566116 (DE-599)DOAJ233f0f69907042c3aedc15e118e90871 DE-627 ger DE-627 rakwb eng RC581-607 Xingwang Zhao verfasserin aut Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies. systemic lupus erythematosus m6A immune immune cell infiltrations bioinformatic analyses Immunologic diseases. Allergy Lan Ge verfasserin aut Juan Wang verfasserin aut Zhiqiang Song verfasserin aut Bing Ni verfasserin aut Xiaochong He verfasserin aut Zhihua Ruan verfasserin aut Yi You verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 12(2022) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:12 year:2022 https://doi.org/10.3389/fimmu.2021.752736 kostenfrei https://doaj.org/article/233f0f69907042c3aedc15e118e90871 kostenfrei https://www.frontiersin.org/articles/10.3389/fimmu.2021.752736/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
allfieldsSound |
10.3389/fimmu.2021.752736 doi (DE-627)DOAJ011566116 (DE-599)DOAJ233f0f69907042c3aedc15e118e90871 DE-627 ger DE-627 rakwb eng RC581-607 Xingwang Zhao verfasserin aut Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies. systemic lupus erythematosus m6A immune immune cell infiltrations bioinformatic analyses Immunologic diseases. Allergy Lan Ge verfasserin aut Juan Wang verfasserin aut Zhiqiang Song verfasserin aut Bing Ni verfasserin aut Xiaochong He verfasserin aut Zhihua Ruan verfasserin aut Yi You verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 12(2022) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:12 year:2022 https://doi.org/10.3389/fimmu.2021.752736 kostenfrei https://doaj.org/article/233f0f69907042c3aedc15e118e90871 kostenfrei https://www.frontiersin.org/articles/10.3389/fimmu.2021.752736/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 |
language |
English |
source |
In Frontiers in Immunology 12(2022) volume:12 year:2022 |
sourceStr |
In Frontiers in Immunology 12(2022) volume:12 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
systemic lupus erythematosus m6A immune immune cell infiltrations bioinformatic analyses Immunologic diseases. Allergy |
isfreeaccess_bool |
true |
container_title |
Frontiers in Immunology |
authorswithroles_txt_mv |
Xingwang Zhao @@aut@@ Lan Ge @@aut@@ Juan Wang @@aut@@ Zhiqiang Song @@aut@@ Bing Ni @@aut@@ Xiaochong He @@aut@@ Zhihua Ruan @@aut@@ Yi You @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
657998354 |
id |
DOAJ011566116 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011566116</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310034900.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fimmu.2021.752736</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011566116</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ233f0f69907042c3aedc15e118e90871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC581-607</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xingwang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">systemic lupus erythematosus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">m6A</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">immune</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">immune cell infiltrations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioinformatic analyses</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Immunologic diseases. Allergy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lan Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiqiang Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bing Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaochong He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihua Ruan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi You</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Immunology</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">12(2022)</subfield><subfield code="w">(DE-627)657998354</subfield><subfield code="w">(DE-600)2606827-8</subfield><subfield code="x">16643224</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fimmu.2021.752736</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/233f0f69907042c3aedc15e118e90871</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fimmu.2021.752736/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-3224</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Xingwang Zhao |
spellingShingle |
Xingwang Zhao misc RC581-607 misc systemic lupus erythematosus misc m6A misc immune misc immune cell infiltrations misc bioinformatic analyses misc Immunologic diseases. Allergy Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses |
authorStr |
Xingwang Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657998354 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC581-607 |
illustrated |
Not Illustrated |
issn |
16643224 |
topic_title |
RC581-607 Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses systemic lupus erythematosus m6A immune immune cell infiltrations bioinformatic analyses |
topic |
misc RC581-607 misc systemic lupus erythematosus misc m6A misc immune misc immune cell infiltrations misc bioinformatic analyses misc Immunologic diseases. Allergy |
topic_unstemmed |
misc RC581-607 misc systemic lupus erythematosus misc m6A misc immune misc immune cell infiltrations misc bioinformatic analyses misc Immunologic diseases. Allergy |
topic_browse |
misc RC581-607 misc systemic lupus erythematosus misc m6A misc immune misc immune cell infiltrations misc bioinformatic analyses misc Immunologic diseases. Allergy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Immunology |
hierarchy_parent_id |
657998354 |
hierarchy_top_title |
Frontiers in Immunology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657998354 (DE-600)2606827-8 |
title |
Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses |
ctrlnum |
(DE-627)DOAJ011566116 (DE-599)DOAJ233f0f69907042c3aedc15e118e90871 |
title_full |
Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses |
author_sort |
Xingwang Zhao |
journal |
Frontiers in Immunology |
journalStr |
Frontiers in Immunology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Xingwang Zhao Lan Ge Juan Wang Zhiqiang Song Bing Ni Xiaochong He Zhihua Ruan Yi You |
container_volume |
12 |
class |
RC581-607 |
format_se |
Elektronische Aufsätze |
author-letter |
Xingwang Zhao |
doi_str_mv |
10.3389/fimmu.2021.752736 |
author2-role |
verfasserin |
title_sort |
exploration of potential integrated models of n6-methyladenosine immunity in systemic lupus erythematosus by bioinformatic analyses |
callnumber |
RC581-607 |
title_auth |
Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses |
abstract |
Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies. |
abstractGer |
Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies. |
abstract_unstemmed |
Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses |
url |
https://doi.org/10.3389/fimmu.2021.752736 https://doaj.org/article/233f0f69907042c3aedc15e118e90871 https://www.frontiersin.org/articles/10.3389/fimmu.2021.752736/full https://doaj.org/toc/1664-3224 |
remote_bool |
true |
author2 |
Lan Ge Juan Wang Zhiqiang Song Bing Ni Xiaochong He Zhihua Ruan Yi You |
author2Str |
Lan Ge Juan Wang Zhiqiang Song Bing Ni Xiaochong He Zhihua Ruan Yi You |
ppnlink |
657998354 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fimmu.2021.752736 |
callnumber-a |
RC581-607 |
up_date |
2024-07-03T21:01:31.616Z |
_version_ |
1803593178537787392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011566116</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310034900.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fimmu.2021.752736</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011566116</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ233f0f69907042c3aedc15e118e90871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC581-607</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xingwang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">systemic lupus erythematosus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">m6A</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">immune</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">immune cell infiltrations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioinformatic analyses</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Immunologic diseases. Allergy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lan Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiqiang Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bing Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaochong He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihua Ruan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi You</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Immunology</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">12(2022)</subfield><subfield code="w">(DE-627)657998354</subfield><subfield code="w">(DE-600)2606827-8</subfield><subfield code="x">16643224</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fimmu.2021.752736</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/233f0f69907042c3aedc15e118e90871</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fimmu.2021.752736/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-3224</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.401268 |