Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions
In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(...
Ausführliche Beschreibung
Autor*in: |
Ahmet Batal [verfasserIn] Turker Ozsari [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronic Journal of Differential Equations - Texas State University, 2003, (2016), 222,, Seite 20 |
---|---|
Übergeordnetes Werk: |
year:2016 ; number:222, ; pages:20 |
Links: |
---|
Katalog-ID: |
DOAJ011797118 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ011797118 | ||
003 | DE-627 | ||
005 | 20230310040126.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2016 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ011797118 | ||
035 | |a (DE-599)DOAJ73c5f6e6629f44d48cc645eedf1d0989 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Ahmet Batal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$. | ||
650 | 4 | |a Nonlinear Schrodinger equations | |
650 | 4 | |a nonlinear boundary conditions | |
650 | 4 | |a local well-posedness | |
650 | 4 | |a inhomogeneous boundary conditions | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Turker Ozsari |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronic Journal of Differential Equations |d Texas State University, 2003 |g (2016), 222,, Seite 20 |w (DE-627)320518205 |w (DE-600)2014226-2 |x 10726691 |7 nnns |
773 | 1 | 8 | |g year:2016 |g number:222, |g pages:20 |
856 | 4 | 0 | |u https://doaj.org/article/73c5f6e6629f44d48cc645eedf1d0989 |z kostenfrei |
856 | 4 | 0 | |u http://ejde.math.txstate.edu/Volumes/2016/222/abstr.html |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1072-6691 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2016 |e 222, |h 20 |
author_variant |
a b ab t o to |
---|---|
matchkey_str |
article:10726691:2016----::olnashoigrqainoteafieiholna |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
QA |
publishDate |
2016 |
allfields |
(DE-627)DOAJ011797118 (DE-599)DOAJ73c5f6e6629f44d48cc645eedf1d0989 DE-627 ger DE-627 rakwb eng QA1-939 Ahmet Batal verfasserin aut Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$. Nonlinear Schrodinger equations nonlinear boundary conditions local well-posedness inhomogeneous boundary conditions Mathematics Turker Ozsari verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2016), 222,, Seite 20 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2016 number:222, pages:20 https://doaj.org/article/73c5f6e6629f44d48cc645eedf1d0989 kostenfrei http://ejde.math.txstate.edu/Volumes/2016/222/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 222, 20 |
spelling |
(DE-627)DOAJ011797118 (DE-599)DOAJ73c5f6e6629f44d48cc645eedf1d0989 DE-627 ger DE-627 rakwb eng QA1-939 Ahmet Batal verfasserin aut Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$. Nonlinear Schrodinger equations nonlinear boundary conditions local well-posedness inhomogeneous boundary conditions Mathematics Turker Ozsari verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2016), 222,, Seite 20 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2016 number:222, pages:20 https://doaj.org/article/73c5f6e6629f44d48cc645eedf1d0989 kostenfrei http://ejde.math.txstate.edu/Volumes/2016/222/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 222, 20 |
allfields_unstemmed |
(DE-627)DOAJ011797118 (DE-599)DOAJ73c5f6e6629f44d48cc645eedf1d0989 DE-627 ger DE-627 rakwb eng QA1-939 Ahmet Batal verfasserin aut Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$. Nonlinear Schrodinger equations nonlinear boundary conditions local well-posedness inhomogeneous boundary conditions Mathematics Turker Ozsari verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2016), 222,, Seite 20 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2016 number:222, pages:20 https://doaj.org/article/73c5f6e6629f44d48cc645eedf1d0989 kostenfrei http://ejde.math.txstate.edu/Volumes/2016/222/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 222, 20 |
allfieldsGer |
(DE-627)DOAJ011797118 (DE-599)DOAJ73c5f6e6629f44d48cc645eedf1d0989 DE-627 ger DE-627 rakwb eng QA1-939 Ahmet Batal verfasserin aut Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$. Nonlinear Schrodinger equations nonlinear boundary conditions local well-posedness inhomogeneous boundary conditions Mathematics Turker Ozsari verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2016), 222,, Seite 20 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2016 number:222, pages:20 https://doaj.org/article/73c5f6e6629f44d48cc645eedf1d0989 kostenfrei http://ejde.math.txstate.edu/Volumes/2016/222/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 222, 20 |
allfieldsSound |
(DE-627)DOAJ011797118 (DE-599)DOAJ73c5f6e6629f44d48cc645eedf1d0989 DE-627 ger DE-627 rakwb eng QA1-939 Ahmet Batal verfasserin aut Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$. Nonlinear Schrodinger equations nonlinear boundary conditions local well-posedness inhomogeneous boundary conditions Mathematics Turker Ozsari verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2016), 222,, Seite 20 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2016 number:222, pages:20 https://doaj.org/article/73c5f6e6629f44d48cc645eedf1d0989 kostenfrei http://ejde.math.txstate.edu/Volumes/2016/222/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 222, 20 |
language |
English |
source |
In Electronic Journal of Differential Equations (2016), 222,, Seite 20 year:2016 number:222, pages:20 |
sourceStr |
In Electronic Journal of Differential Equations (2016), 222,, Seite 20 year:2016 number:222, pages:20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nonlinear Schrodinger equations nonlinear boundary conditions local well-posedness inhomogeneous boundary conditions Mathematics |
isfreeaccess_bool |
true |
container_title |
Electronic Journal of Differential Equations |
authorswithroles_txt_mv |
Ahmet Batal @@aut@@ Turker Ozsari @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
320518205 |
id |
DOAJ011797118 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011797118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310040126.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011797118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ73c5f6e6629f44d48cc645eedf1d0989</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ahmet Batal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Schrodinger equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local well-posedness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inhomogeneous boundary conditions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Turker Ozsari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Journal of Differential Equations</subfield><subfield code="d">Texas State University, 2003</subfield><subfield code="g">(2016), 222,, Seite 20</subfield><subfield code="w">(DE-627)320518205</subfield><subfield code="w">(DE-600)2014226-2</subfield><subfield code="x">10726691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield><subfield code="g">number:222,</subfield><subfield code="g">pages:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/73c5f6e6629f44d48cc645eedf1d0989</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ejde.math.txstate.edu/Volumes/2016/222/abstr.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1072-6691</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield><subfield code="e">222,</subfield><subfield code="h">20</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ahmet Batal |
spellingShingle |
Ahmet Batal misc QA1-939 misc Nonlinear Schrodinger equations misc nonlinear boundary conditions misc local well-posedness misc inhomogeneous boundary conditions misc Mathematics Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions |
authorStr |
Ahmet Batal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320518205 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
10726691 |
topic_title |
QA1-939 Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions Nonlinear Schrodinger equations nonlinear boundary conditions local well-posedness inhomogeneous boundary conditions |
topic |
misc QA1-939 misc Nonlinear Schrodinger equations misc nonlinear boundary conditions misc local well-posedness misc inhomogeneous boundary conditions misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Nonlinear Schrodinger equations misc nonlinear boundary conditions misc local well-posedness misc inhomogeneous boundary conditions misc Mathematics |
topic_browse |
misc QA1-939 misc Nonlinear Schrodinger equations misc nonlinear boundary conditions misc local well-posedness misc inhomogeneous boundary conditions misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronic Journal of Differential Equations |
hierarchy_parent_id |
320518205 |
hierarchy_top_title |
Electronic Journal of Differential Equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320518205 (DE-600)2014226-2 |
title |
Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions |
ctrlnum |
(DE-627)DOAJ011797118 (DE-599)DOAJ73c5f6e6629f44d48cc645eedf1d0989 |
title_full |
Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions |
author_sort |
Ahmet Batal |
journal |
Electronic Journal of Differential Equations |
journalStr |
Electronic Journal of Differential Equations |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
20 |
author_browse |
Ahmet Batal Turker Ozsari |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Ahmet Batal |
author2-role |
verfasserin |
title_sort |
nonlinear schrodinger equations on the half-line with nonlinear boundary conditions |
callnumber |
QA1-939 |
title_auth |
Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions |
abstract |
In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$. |
abstractGer |
In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$. |
abstract_unstemmed |
In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
222, |
title_short |
Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions |
url |
https://doaj.org/article/73c5f6e6629f44d48cc645eedf1d0989 http://ejde.math.txstate.edu/Volumes/2016/222/abstr.html https://doaj.org/toc/1072-6691 |
remote_bool |
true |
author2 |
Turker Ozsari |
author2Str |
Turker Ozsari |
ppnlink |
320518205 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T22:16:04.462Z |
_version_ |
1803597868658851840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011797118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310040126.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011797118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ73c5f6e6629f44d48cc645eedf1d0989</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ahmet Batal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t)+\lambda|u(0,t)|^ru(0,t)=0,\quad \lambda\in\mathbb{R}-\{0\},\; r< 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0)$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\mathbb{R}_+)$ with $s\in (\frac{1}{2},\frac{7}{2})-\{\frac{3}{2}\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t)=h(t)$ where $h\in H^{\frac{2s-1}{4}}(0,T)$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Schrodinger equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local well-posedness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inhomogeneous boundary conditions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Turker Ozsari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Journal of Differential Equations</subfield><subfield code="d">Texas State University, 2003</subfield><subfield code="g">(2016), 222,, Seite 20</subfield><subfield code="w">(DE-627)320518205</subfield><subfield code="w">(DE-600)2014226-2</subfield><subfield code="x">10726691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield><subfield code="g">number:222,</subfield><subfield code="g">pages:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/73c5f6e6629f44d48cc645eedf1d0989</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ejde.math.txstate.edu/Volumes/2016/222/abstr.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1072-6691</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield><subfield code="e">222,</subfield><subfield code="h">20</subfield></datafield></record></collection>
|
score |
7.4007034 |