Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense
Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special fea...
Ausführliche Beschreibung
Autor*in: |
László Kőrösi [verfasserIn] Balázs Bognár [verfasserIn] Gyula Czégény [verfasserIn] Simone Lauciello [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanomaterials - MDPI AG, 2012, 12(2022), 3, p 483 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:3, p 483 |
Links: |
---|
DOI / URN: |
10.3390/nano12030483 |
---|
Katalog-ID: |
DOAJ011827343 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ011827343 | ||
003 | DE-627 | ||
005 | 20240414202323.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nano12030483 |2 doi | |
035 | |a (DE-627)DOAJ011827343 | ||
035 | |a (DE-599)DOAJe0e983cd5e34412dbfa9d4e5269b6fcd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a László Kőrösi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms. | ||
650 | 4 | |a anatase | |
650 | 4 | |a rutile | |
650 | 4 | |a sol-gel | |
650 | 4 | |a photocatalysis | |
650 | 4 | |a reactive oxygen species | |
650 | 4 | |a <i<Vitis vinifera</i< | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Balázs Bognár |e verfasserin |4 aut | |
700 | 0 | |a Gyula Czégény |e verfasserin |4 aut | |
700 | 0 | |a Simone Lauciello |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanomaterials |d MDPI AG, 2012 |g 12(2022), 3, p 483 |w (DE-627)718627199 |w (DE-600)2662255-5 |x 20794991 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:3, p 483 |
856 | 4 | 0 | |u https://doi.org/10.3390/nano12030483 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e0e983cd5e34412dbfa9d4e5269b6fcd |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-4991/12/3/483 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-4991 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 3, p 483 |
author_variant |
l k lk b b bb g c gc s l sl |
---|---|
matchkey_str |
article:20794991:2022----::hsslcieyteioaaaenrtltou2unncytladhiipcsnrpvnlaeacmltoomnr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QD |
publishDate |
2022 |
allfields |
10.3390/nano12030483 doi (DE-627)DOAJ011827343 (DE-599)DOAJe0e983cd5e34412dbfa9d4e5269b6fcd DE-627 ger DE-627 rakwb eng QD1-999 László Kőrösi verfasserin aut Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms. anatase rutile sol-gel photocatalysis reactive oxygen species <i<Vitis vinifera</i< Chemistry Balázs Bognár verfasserin aut Gyula Czégény verfasserin aut Simone Lauciello verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 483 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 483 https://doi.org/10.3390/nano12030483 kostenfrei https://doaj.org/article/e0e983cd5e34412dbfa9d4e5269b6fcd kostenfrei https://www.mdpi.com/2079-4991/12/3/483 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 483 |
spelling |
10.3390/nano12030483 doi (DE-627)DOAJ011827343 (DE-599)DOAJe0e983cd5e34412dbfa9d4e5269b6fcd DE-627 ger DE-627 rakwb eng QD1-999 László Kőrösi verfasserin aut Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms. anatase rutile sol-gel photocatalysis reactive oxygen species <i<Vitis vinifera</i< Chemistry Balázs Bognár verfasserin aut Gyula Czégény verfasserin aut Simone Lauciello verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 483 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 483 https://doi.org/10.3390/nano12030483 kostenfrei https://doaj.org/article/e0e983cd5e34412dbfa9d4e5269b6fcd kostenfrei https://www.mdpi.com/2079-4991/12/3/483 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 483 |
allfields_unstemmed |
10.3390/nano12030483 doi (DE-627)DOAJ011827343 (DE-599)DOAJe0e983cd5e34412dbfa9d4e5269b6fcd DE-627 ger DE-627 rakwb eng QD1-999 László Kőrösi verfasserin aut Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms. anatase rutile sol-gel photocatalysis reactive oxygen species <i<Vitis vinifera</i< Chemistry Balázs Bognár verfasserin aut Gyula Czégény verfasserin aut Simone Lauciello verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 483 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 483 https://doi.org/10.3390/nano12030483 kostenfrei https://doaj.org/article/e0e983cd5e34412dbfa9d4e5269b6fcd kostenfrei https://www.mdpi.com/2079-4991/12/3/483 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 483 |
allfieldsGer |
10.3390/nano12030483 doi (DE-627)DOAJ011827343 (DE-599)DOAJe0e983cd5e34412dbfa9d4e5269b6fcd DE-627 ger DE-627 rakwb eng QD1-999 László Kőrösi verfasserin aut Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms. anatase rutile sol-gel photocatalysis reactive oxygen species <i<Vitis vinifera</i< Chemistry Balázs Bognár verfasserin aut Gyula Czégény verfasserin aut Simone Lauciello verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 483 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 483 https://doi.org/10.3390/nano12030483 kostenfrei https://doaj.org/article/e0e983cd5e34412dbfa9d4e5269b6fcd kostenfrei https://www.mdpi.com/2079-4991/12/3/483 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 483 |
allfieldsSound |
10.3390/nano12030483 doi (DE-627)DOAJ011827343 (DE-599)DOAJe0e983cd5e34412dbfa9d4e5269b6fcd DE-627 ger DE-627 rakwb eng QD1-999 László Kőrösi verfasserin aut Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms. anatase rutile sol-gel photocatalysis reactive oxygen species <i<Vitis vinifera</i< Chemistry Balázs Bognár verfasserin aut Gyula Czégény verfasserin aut Simone Lauciello verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 483 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 483 https://doi.org/10.3390/nano12030483 kostenfrei https://doaj.org/article/e0e983cd5e34412dbfa9d4e5269b6fcd kostenfrei https://www.mdpi.com/2079-4991/12/3/483 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 483 |
language |
English |
source |
In Nanomaterials 12(2022), 3, p 483 volume:12 year:2022 number:3, p 483 |
sourceStr |
In Nanomaterials 12(2022), 3, p 483 volume:12 year:2022 number:3, p 483 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
anatase rutile sol-gel photocatalysis reactive oxygen species <i<Vitis vinifera</i< Chemistry |
isfreeaccess_bool |
true |
container_title |
Nanomaterials |
authorswithroles_txt_mv |
László Kőrösi @@aut@@ Balázs Bognár @@aut@@ Gyula Czégény @@aut@@ Simone Lauciello @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718627199 |
id |
DOAJ011827343 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011827343</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414202323.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano12030483</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011827343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0e983cd5e34412dbfa9d4e5269b6fcd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">László Kőrösi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anatase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rutile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sol-gel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photocatalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive oxygen species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Vitis vinifera</i<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Balázs Bognár</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gyula Czégény</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone Lauciello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 3, p 483</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 483</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano12030483</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0e983cd5e34412dbfa9d4e5269b6fcd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/12/3/483</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 483</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
László Kőrösi |
spellingShingle |
László Kőrösi misc QD1-999 misc anatase misc rutile misc sol-gel misc photocatalysis misc reactive oxygen species misc <i<Vitis vinifera</i< misc Chemistry Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense |
authorStr |
László Kőrösi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627199 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
20794991 |
topic_title |
QD1-999 Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense anatase rutile sol-gel photocatalysis reactive oxygen species <i<Vitis vinifera</i< |
topic |
misc QD1-999 misc anatase misc rutile misc sol-gel misc photocatalysis misc reactive oxygen species misc <i<Vitis vinifera</i< misc Chemistry |
topic_unstemmed |
misc QD1-999 misc anatase misc rutile misc sol-gel misc photocatalysis misc reactive oxygen species misc <i<Vitis vinifera</i< misc Chemistry |
topic_browse |
misc QD1-999 misc anatase misc rutile misc sol-gel misc photocatalysis misc reactive oxygen species misc <i<Vitis vinifera</i< misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanomaterials |
hierarchy_parent_id |
718627199 |
hierarchy_top_title |
Nanomaterials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627199 (DE-600)2662255-5 |
title |
Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense |
ctrlnum |
(DE-627)DOAJ011827343 (DE-599)DOAJe0e983cd5e34412dbfa9d4e5269b6fcd |
title_full |
Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense |
author_sort |
László Kőrösi |
journal |
Nanomaterials |
journalStr |
Nanomaterials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
László Kőrösi Balázs Bognár Gyula Czégény Simone Lauciello |
container_volume |
12 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
László Kőrösi |
doi_str_mv |
10.3390/nano12030483 |
author2-role |
verfasserin |
title_sort |
phase-selective synthesis of anatase and rutile tio<sub<2</sub< nanocrystals and their impacts on grapevine leaves: accumulation of mineral nutrients and triggering the plant defense |
callnumber |
QD1-999 |
title_auth |
Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense |
abstract |
Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms. |
abstractGer |
Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms. |
abstract_unstemmed |
Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 483 |
title_short |
Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense |
url |
https://doi.org/10.3390/nano12030483 https://doaj.org/article/e0e983cd5e34412dbfa9d4e5269b6fcd https://www.mdpi.com/2079-4991/12/3/483 https://doaj.org/toc/2079-4991 |
remote_bool |
true |
author2 |
Balázs Bognár Gyula Czégény Simone Lauciello |
author2Str |
Balázs Bognár Gyula Czégény Simone Lauciello |
ppnlink |
718627199 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nano12030483 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T22:25:41.246Z |
_version_ |
1803598473460711424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011827343</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414202323.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano12030483</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011827343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0e983cd5e34412dbfa9d4e5269b6fcd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">László Kőrösi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-Selective Synthesis of Anatase and Rutile TiO<sub<2</sub< Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Titanium dioxide nanocrystals (TiO<sub<2</sub< NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O<sub<2</sub< and H<sub<2</sub<O. This special feature makes TiO<sub<2</sub< an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO<sub<2</sub< NCs may be also exploited in the agricultural sector. However, the effects of TiO<sub<2</sub< NCs on plants are not fully understood and/or phase-pure TiO<sub<2</sub< NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO<sub<2</sub< NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, <i<Vitis vinifera</i< cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO<sub<2</sub< NCs at concentrations of 0.001, 0.01, 0.1, and 1 <i<w</i</<i<v</i<%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO<sub<2</sub< NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anatase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rutile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sol-gel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photocatalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive oxygen species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Vitis vinifera</i<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Balázs Bognár</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gyula Czégény</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone Lauciello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 3, p 483</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 483</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano12030483</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0e983cd5e34412dbfa9d4e5269b6fcd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/12/3/483</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 483</subfield></datafield></record></collection>
|
score |
7.4021063 |