Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques
Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information....
Ausführliche Beschreibung
Autor*in: |
Panagiotis Theofilis [verfasserIn] Marios Sagris [verfasserIn] Alexios S. Antonopoulos [verfasserIn] Evangelos Oikonomou [verfasserIn] Konstantinos Tsioufis [verfasserIn] Dimitris Tousoulis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Tomography - MDPI AG, 2021, 8(2022), 4, Seite 1742-1758 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:4 ; pages:1742-1758 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/tomography8040147 |
---|
Katalog-ID: |
DOAJ012246808 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ012246808 | ||
003 | DE-627 | ||
005 | 20240414214627.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/tomography8040147 |2 doi | |
035 | |a (DE-627)DOAJ012246808 | ||
035 | |a (DE-599)DOAJd803061c88e14bd79586a8854ccc5de5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
100 | 0 | |a Panagiotis Theofilis |e verfasserin |4 aut | |
245 | 1 | 0 | |a Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals. | ||
650 | 4 | |a vulnerable plaque | |
650 | 4 | |a atherosclerosis | |
650 | 4 | |a coronary CT angiography | |
650 | 4 | |a non-invasive imaging | |
650 | 4 | |a biomarker | |
653 | 0 | |a Computer applications to medicine. Medical informatics | |
700 | 0 | |a Marios Sagris |e verfasserin |4 aut | |
700 | 0 | |a Alexios S. Antonopoulos |e verfasserin |4 aut | |
700 | 0 | |a Evangelos Oikonomou |e verfasserin |4 aut | |
700 | 0 | |a Konstantinos Tsioufis |e verfasserin |4 aut | |
700 | 0 | |a Dimitris Tousoulis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Tomography |d MDPI AG, 2021 |g 8(2022), 4, Seite 1742-1758 |w (DE-627)859892174 |w (DE-600)2857000-5 |x 2379139X |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:4 |g pages:1742-1758 |
856 | 4 | 0 | |u https://doi.org/10.3390/tomography8040147 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d803061c88e14bd79586a8854ccc5de5 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2379-139X/8/4/147 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2379-1381 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2379-139X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 4 |h 1742-1758 |
author_variant |
p t pt m s ms a s a asa e o eo k t kt d t dt |
---|---|
matchkey_str |
article:2379139X:2022----::oivsvmdlteitesesetfunrbeooay |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
R |
publishDate |
2022 |
allfields |
10.3390/tomography8040147 doi (DE-627)DOAJ012246808 (DE-599)DOAJd803061c88e14bd79586a8854ccc5de5 DE-627 ger DE-627 rakwb eng R858-859.7 Panagiotis Theofilis verfasserin aut Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals. vulnerable plaque atherosclerosis coronary CT angiography non-invasive imaging biomarker Computer applications to medicine. Medical informatics Marios Sagris verfasserin aut Alexios S. Antonopoulos verfasserin aut Evangelos Oikonomou verfasserin aut Konstantinos Tsioufis verfasserin aut Dimitris Tousoulis verfasserin aut In Tomography MDPI AG, 2021 8(2022), 4, Seite 1742-1758 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:4 pages:1742-1758 https://doi.org/10.3390/tomography8040147 kostenfrei https://doaj.org/article/d803061c88e14bd79586a8854ccc5de5 kostenfrei https://www.mdpi.com/2379-139X/8/4/147 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 4 1742-1758 |
spelling |
10.3390/tomography8040147 doi (DE-627)DOAJ012246808 (DE-599)DOAJd803061c88e14bd79586a8854ccc5de5 DE-627 ger DE-627 rakwb eng R858-859.7 Panagiotis Theofilis verfasserin aut Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals. vulnerable plaque atherosclerosis coronary CT angiography non-invasive imaging biomarker Computer applications to medicine. Medical informatics Marios Sagris verfasserin aut Alexios S. Antonopoulos verfasserin aut Evangelos Oikonomou verfasserin aut Konstantinos Tsioufis verfasserin aut Dimitris Tousoulis verfasserin aut In Tomography MDPI AG, 2021 8(2022), 4, Seite 1742-1758 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:4 pages:1742-1758 https://doi.org/10.3390/tomography8040147 kostenfrei https://doaj.org/article/d803061c88e14bd79586a8854ccc5de5 kostenfrei https://www.mdpi.com/2379-139X/8/4/147 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 4 1742-1758 |
allfields_unstemmed |
10.3390/tomography8040147 doi (DE-627)DOAJ012246808 (DE-599)DOAJd803061c88e14bd79586a8854ccc5de5 DE-627 ger DE-627 rakwb eng R858-859.7 Panagiotis Theofilis verfasserin aut Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals. vulnerable plaque atherosclerosis coronary CT angiography non-invasive imaging biomarker Computer applications to medicine. Medical informatics Marios Sagris verfasserin aut Alexios S. Antonopoulos verfasserin aut Evangelos Oikonomou verfasserin aut Konstantinos Tsioufis verfasserin aut Dimitris Tousoulis verfasserin aut In Tomography MDPI AG, 2021 8(2022), 4, Seite 1742-1758 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:4 pages:1742-1758 https://doi.org/10.3390/tomography8040147 kostenfrei https://doaj.org/article/d803061c88e14bd79586a8854ccc5de5 kostenfrei https://www.mdpi.com/2379-139X/8/4/147 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 4 1742-1758 |
allfieldsGer |
10.3390/tomography8040147 doi (DE-627)DOAJ012246808 (DE-599)DOAJd803061c88e14bd79586a8854ccc5de5 DE-627 ger DE-627 rakwb eng R858-859.7 Panagiotis Theofilis verfasserin aut Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals. vulnerable plaque atherosclerosis coronary CT angiography non-invasive imaging biomarker Computer applications to medicine. Medical informatics Marios Sagris verfasserin aut Alexios S. Antonopoulos verfasserin aut Evangelos Oikonomou verfasserin aut Konstantinos Tsioufis verfasserin aut Dimitris Tousoulis verfasserin aut In Tomography MDPI AG, 2021 8(2022), 4, Seite 1742-1758 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:4 pages:1742-1758 https://doi.org/10.3390/tomography8040147 kostenfrei https://doaj.org/article/d803061c88e14bd79586a8854ccc5de5 kostenfrei https://www.mdpi.com/2379-139X/8/4/147 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 4 1742-1758 |
allfieldsSound |
10.3390/tomography8040147 doi (DE-627)DOAJ012246808 (DE-599)DOAJd803061c88e14bd79586a8854ccc5de5 DE-627 ger DE-627 rakwb eng R858-859.7 Panagiotis Theofilis verfasserin aut Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals. vulnerable plaque atherosclerosis coronary CT angiography non-invasive imaging biomarker Computer applications to medicine. Medical informatics Marios Sagris verfasserin aut Alexios S. Antonopoulos verfasserin aut Evangelos Oikonomou verfasserin aut Konstantinos Tsioufis verfasserin aut Dimitris Tousoulis verfasserin aut In Tomography MDPI AG, 2021 8(2022), 4, Seite 1742-1758 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:4 pages:1742-1758 https://doi.org/10.3390/tomography8040147 kostenfrei https://doaj.org/article/d803061c88e14bd79586a8854ccc5de5 kostenfrei https://www.mdpi.com/2379-139X/8/4/147 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 4 1742-1758 |
language |
English |
source |
In Tomography 8(2022), 4, Seite 1742-1758 volume:8 year:2022 number:4 pages:1742-1758 |
sourceStr |
In Tomography 8(2022), 4, Seite 1742-1758 volume:8 year:2022 number:4 pages:1742-1758 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
vulnerable plaque atherosclerosis coronary CT angiography non-invasive imaging biomarker Computer applications to medicine. Medical informatics |
isfreeaccess_bool |
true |
container_title |
Tomography |
authorswithroles_txt_mv |
Panagiotis Theofilis @@aut@@ Marios Sagris @@aut@@ Alexios S. Antonopoulos @@aut@@ Evangelos Oikonomou @@aut@@ Konstantinos Tsioufis @@aut@@ Dimitris Tousoulis @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
859892174 |
id |
DOAJ012246808 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ012246808</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414214627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/tomography8040147</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ012246808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd803061c88e14bd79586a8854ccc5de5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Panagiotis Theofilis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vulnerable plaque</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atherosclerosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronary CT angiography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-invasive imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomarker</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marios Sagris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexios S. Antonopoulos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Evangelos Oikonomou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Konstantinos Tsioufis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dimitris Tousoulis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tomography</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">8(2022), 4, Seite 1742-1758</subfield><subfield code="w">(DE-627)859892174</subfield><subfield code="w">(DE-600)2857000-5</subfield><subfield code="x">2379139X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1742-1758</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/tomography8040147</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d803061c88e14bd79586a8854ccc5de5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2379-139X/8/4/147</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-1381</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-139X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">1742-1758</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Panagiotis Theofilis |
spellingShingle |
Panagiotis Theofilis misc R858-859.7 misc vulnerable plaque misc atherosclerosis misc coronary CT angiography misc non-invasive imaging misc biomarker misc Computer applications to medicine. Medical informatics Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques |
authorStr |
Panagiotis Theofilis |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)859892174 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
2379139X |
topic_title |
R858-859.7 Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques vulnerable plaque atherosclerosis coronary CT angiography non-invasive imaging biomarker |
topic |
misc R858-859.7 misc vulnerable plaque misc atherosclerosis misc coronary CT angiography misc non-invasive imaging misc biomarker misc Computer applications to medicine. Medical informatics |
topic_unstemmed |
misc R858-859.7 misc vulnerable plaque misc atherosclerosis misc coronary CT angiography misc non-invasive imaging misc biomarker misc Computer applications to medicine. Medical informatics |
topic_browse |
misc R858-859.7 misc vulnerable plaque misc atherosclerosis misc coronary CT angiography misc non-invasive imaging misc biomarker misc Computer applications to medicine. Medical informatics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Tomography |
hierarchy_parent_id |
859892174 |
hierarchy_top_title |
Tomography |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)859892174 (DE-600)2857000-5 |
title |
Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques |
ctrlnum |
(DE-627)DOAJ012246808 (DE-599)DOAJd803061c88e14bd79586a8854ccc5de5 |
title_full |
Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques |
author_sort |
Panagiotis Theofilis |
journal |
Tomography |
journalStr |
Tomography |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1742 |
author_browse |
Panagiotis Theofilis Marios Sagris Alexios S. Antonopoulos Evangelos Oikonomou Konstantinos Tsioufis Dimitris Tousoulis |
container_volume |
8 |
class |
R858-859.7 |
format_se |
Elektronische Aufsätze |
author-letter |
Panagiotis Theofilis |
doi_str_mv |
10.3390/tomography8040147 |
author2-role |
verfasserin |
title_sort |
non-invasive modalities in the assessment of vulnerable coronary atherosclerotic plaques |
callnumber |
R858-859.7 |
title_auth |
Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques |
abstract |
Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals. |
abstractGer |
Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals. |
abstract_unstemmed |
Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques |
url |
https://doi.org/10.3390/tomography8040147 https://doaj.org/article/d803061c88e14bd79586a8854ccc5de5 https://www.mdpi.com/2379-139X/8/4/147 https://doaj.org/toc/2379-1381 https://doaj.org/toc/2379-139X |
remote_bool |
true |
author2 |
Marios Sagris Alexios S. Antonopoulos Evangelos Oikonomou Konstantinos Tsioufis Dimitris Tousoulis |
author2Str |
Marios Sagris Alexios S. Antonopoulos Evangelos Oikonomou Konstantinos Tsioufis Dimitris Tousoulis |
ppnlink |
859892174 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/tomography8040147 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-04T00:18:50.513Z |
_version_ |
1803605592522096640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ012246808</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414214627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/tomography8040147</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ012246808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd803061c88e14bd79586a8854ccc5de5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Panagiotis Theofilis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vulnerable plaque</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atherosclerosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronary CT angiography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-invasive imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomarker</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marios Sagris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexios S. Antonopoulos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Evangelos Oikonomou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Konstantinos Tsioufis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dimitris Tousoulis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tomography</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">8(2022), 4, Seite 1742-1758</subfield><subfield code="w">(DE-627)859892174</subfield><subfield code="w">(DE-600)2857000-5</subfield><subfield code="x">2379139X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1742-1758</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/tomography8040147</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d803061c88e14bd79586a8854ccc5de5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2379-139X/8/4/147</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-1381</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-139X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">1742-1758</subfield></datafield></record></collection>
|
score |
7.400304 |