Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem
This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<...
Ausführliche Beschreibung
Autor*in: |
Yongxiang Li [verfasserIn] Weifeng Ma [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
fully fourth-order boundary value problem |
---|
Übergeordnetes Werk: |
In: Mathematics - MDPI AG, 2013, 10(2022), 17, p 3063 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:17, p 3063 |
Links: |
---|
DOI / URN: |
10.3390/math10173063 |
---|
Katalog-ID: |
DOAJ01225164X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ01225164X | ||
003 | DE-627 | ||
005 | 20240414213508.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/math10173063 |2 doi | |
035 | |a (DE-627)DOAJ01225164X | ||
035 | |a (DE-599)DOAJ4268a919ad0a444c83424fc4681ddfdb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Yongxiang Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones. | ||
650 | 4 | |a fully fourth-order boundary value problem | |
650 | 4 | |a simply supported beam equation | |
650 | 4 | |a positive solution | |
650 | 4 | |a cone | |
650 | 4 | |a fixed point index | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Weifeng Ma |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematics |d MDPI AG, 2013 |g 10(2022), 17, p 3063 |w (DE-627)737287764 |w (DE-600)2704244-3 |x 22277390 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:17, p 3063 |
856 | 4 | 0 | |u https://doi.org/10.3390/math10173063 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4268a919ad0a444c83424fc4681ddfdb |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7390/10/17/3063 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7390 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 17, p 3063 |
author_variant |
y l yl w m wm |
---|---|
matchkey_str |
article:22277390:2022----::xsecopstvsltosoaulfutodro |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QA |
publishDate |
2022 |
allfields |
10.3390/math10173063 doi (DE-627)DOAJ01225164X (DE-599)DOAJ4268a919ad0a444c83424fc4681ddfdb DE-627 ger DE-627 rakwb eng QA1-939 Yongxiang Li verfasserin aut Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones. fully fourth-order boundary value problem simply supported beam equation positive solution cone fixed point index Mathematics Weifeng Ma verfasserin aut In Mathematics MDPI AG, 2013 10(2022), 17, p 3063 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:10 year:2022 number:17, p 3063 https://doi.org/10.3390/math10173063 kostenfrei https://doaj.org/article/4268a919ad0a444c83424fc4681ddfdb kostenfrei https://www.mdpi.com/2227-7390/10/17/3063 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 17, p 3063 |
spelling |
10.3390/math10173063 doi (DE-627)DOAJ01225164X (DE-599)DOAJ4268a919ad0a444c83424fc4681ddfdb DE-627 ger DE-627 rakwb eng QA1-939 Yongxiang Li verfasserin aut Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones. fully fourth-order boundary value problem simply supported beam equation positive solution cone fixed point index Mathematics Weifeng Ma verfasserin aut In Mathematics MDPI AG, 2013 10(2022), 17, p 3063 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:10 year:2022 number:17, p 3063 https://doi.org/10.3390/math10173063 kostenfrei https://doaj.org/article/4268a919ad0a444c83424fc4681ddfdb kostenfrei https://www.mdpi.com/2227-7390/10/17/3063 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 17, p 3063 |
allfields_unstemmed |
10.3390/math10173063 doi (DE-627)DOAJ01225164X (DE-599)DOAJ4268a919ad0a444c83424fc4681ddfdb DE-627 ger DE-627 rakwb eng QA1-939 Yongxiang Li verfasserin aut Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones. fully fourth-order boundary value problem simply supported beam equation positive solution cone fixed point index Mathematics Weifeng Ma verfasserin aut In Mathematics MDPI AG, 2013 10(2022), 17, p 3063 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:10 year:2022 number:17, p 3063 https://doi.org/10.3390/math10173063 kostenfrei https://doaj.org/article/4268a919ad0a444c83424fc4681ddfdb kostenfrei https://www.mdpi.com/2227-7390/10/17/3063 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 17, p 3063 |
allfieldsGer |
10.3390/math10173063 doi (DE-627)DOAJ01225164X (DE-599)DOAJ4268a919ad0a444c83424fc4681ddfdb DE-627 ger DE-627 rakwb eng QA1-939 Yongxiang Li verfasserin aut Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones. fully fourth-order boundary value problem simply supported beam equation positive solution cone fixed point index Mathematics Weifeng Ma verfasserin aut In Mathematics MDPI AG, 2013 10(2022), 17, p 3063 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:10 year:2022 number:17, p 3063 https://doi.org/10.3390/math10173063 kostenfrei https://doaj.org/article/4268a919ad0a444c83424fc4681ddfdb kostenfrei https://www.mdpi.com/2227-7390/10/17/3063 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 17, p 3063 |
allfieldsSound |
10.3390/math10173063 doi (DE-627)DOAJ01225164X (DE-599)DOAJ4268a919ad0a444c83424fc4681ddfdb DE-627 ger DE-627 rakwb eng QA1-939 Yongxiang Li verfasserin aut Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones. fully fourth-order boundary value problem simply supported beam equation positive solution cone fixed point index Mathematics Weifeng Ma verfasserin aut In Mathematics MDPI AG, 2013 10(2022), 17, p 3063 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:10 year:2022 number:17, p 3063 https://doi.org/10.3390/math10173063 kostenfrei https://doaj.org/article/4268a919ad0a444c83424fc4681ddfdb kostenfrei https://www.mdpi.com/2227-7390/10/17/3063 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 17, p 3063 |
language |
English |
source |
In Mathematics 10(2022), 17, p 3063 volume:10 year:2022 number:17, p 3063 |
sourceStr |
In Mathematics 10(2022), 17, p 3063 volume:10 year:2022 number:17, p 3063 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fully fourth-order boundary value problem simply supported beam equation positive solution cone fixed point index Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematics |
authorswithroles_txt_mv |
Yongxiang Li @@aut@@ Weifeng Ma @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287764 |
id |
DOAJ01225164X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01225164X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414213508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math10173063</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01225164X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4268a919ad0a444c83424fc4681ddfdb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yongxiang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fully fourth-order boundary value problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simply supported beam equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">positive solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed point index</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weifeng Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 17, p 3063</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:17, p 3063</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math10173063</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4268a919ad0a444c83424fc4681ddfdb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/10/17/3063</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">17, p 3063</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yongxiang Li |
spellingShingle |
Yongxiang Li misc QA1-939 misc fully fourth-order boundary value problem misc simply supported beam equation misc positive solution misc cone misc fixed point index misc Mathematics Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem |
authorStr |
Yongxiang Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287764 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22277390 |
topic_title |
QA1-939 Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem fully fourth-order boundary value problem simply supported beam equation positive solution cone fixed point index |
topic |
misc QA1-939 misc fully fourth-order boundary value problem misc simply supported beam equation misc positive solution misc cone misc fixed point index misc Mathematics |
topic_unstemmed |
misc QA1-939 misc fully fourth-order boundary value problem misc simply supported beam equation misc positive solution misc cone misc fixed point index misc Mathematics |
topic_browse |
misc QA1-939 misc fully fourth-order boundary value problem misc simply supported beam equation misc positive solution misc cone misc fixed point index misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematics |
hierarchy_parent_id |
737287764 |
hierarchy_top_title |
Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287764 (DE-600)2704244-3 |
title |
Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem |
ctrlnum |
(DE-627)DOAJ01225164X (DE-599)DOAJ4268a919ad0a444c83424fc4681ddfdb |
title_full |
Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem |
author_sort |
Yongxiang Li |
journal |
Mathematics |
journalStr |
Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yongxiang Li Weifeng Ma |
container_volume |
10 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Yongxiang Li |
doi_str_mv |
10.3390/math10173063 |
author2-role |
verfasserin |
title_sort |
existence of positive solutions for a fully fourth-order boundary value problem |
callnumber |
QA1-939 |
title_auth |
Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem |
abstract |
This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones. |
abstractGer |
This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones. |
abstract_unstemmed |
This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
17, p 3063 |
title_short |
Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem |
url |
https://doi.org/10.3390/math10173063 https://doaj.org/article/4268a919ad0a444c83424fc4681ddfdb https://www.mdpi.com/2227-7390/10/17/3063 https://doaj.org/toc/2227-7390 |
remote_bool |
true |
author2 |
Weifeng Ma |
author2Str |
Weifeng Ma |
ppnlink |
737287764 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/math10173063 |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T00:20:01.880Z |
_version_ |
1803605667355820033 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01225164X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414213508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math10173063</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01225164X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4268a919ad0a444c83424fc4681ddfdb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yongxiang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Existence of Positive Solutions for a Fully Fourth-Order Boundary Value Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with the existence of positive solutions of the fully fourth-order boundary value pqroblem <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<u</mi<<mrow<<mo<(</mo<<mn<4</mn<<mo<)</mo<</mrow<</msup<<mo<=</mo<<mi<f</mi<<mrow<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mo<′</mo<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mo<,</mo<<mspace width="0.166667em"<</mspace<<msup<<mi<u</mi<<mrow<<mo<‴</mo<</mrow<</msup<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<</semantics<</math<</inline-formula< with the boundary condition <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<mi<u</mi<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<0</mn<<mo<)</mo<</mrow<<mo<=</mo<<msup<<mi<u</mi<<mrow<<mo<″</mo<</mrow<</msup<<mrow<<mo<(</mo<<mn<1</mn<<mo<)</mo<</mrow<<mo<=</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula<, which models a statically bending elastic beam whose two ends are simply supported, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<:</mo<<mrow<<mo<[</mo<<mn<0</mn<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mn<1</mn<<mo<]</mo<</mrow<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<×</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<−</mo<</msup<<mo<×</mo<<mi mathvariant="double-struck"<R</mi<<mo<→</mo<<msup<<mi mathvariant="double-struck"<R</mi<<mo<+</mo<</msup<</mrow<</semantics<</math<</inline-formula< is continuous. Some precise inequality conditions on <i<f</i< guaranteeing the existence of positive solutions are presented. The inequality conditions allow that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<f</mi<<mo<(</mo<<mi<t</mi<<mo<,</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<</mrow<</semantics<</math<</inline-formula< may be asymptotically linear, superlinear, or sublinear on <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<u</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<v</mi<<mo<,</mo<<mspace width="0.166667em"<</mspace<<mi<w</mi<</mrow<</semantics<</math<</inline-formula<, and <i<z</i< as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mn<0</mn<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<|</mo<<mo<(</mo<<mi<u</mi<<mo<,</mo<<mi<v</mi<<mo<,</mo<<mi<w</mi<<mo<,</mo<<mi<z</mi<<mo<)</mo<<mo<|</mo<<mo<→</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<. Our discussion is based on the fixed point index theory in cones.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fully fourth-order boundary value problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simply supported beam equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">positive solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed point index</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weifeng Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 17, p 3063</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:17, p 3063</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math10173063</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4268a919ad0a444c83424fc4681ddfdb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/10/17/3063</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">17, p 3063</subfield></datafield></record></collection>
|
score |
7.400978 |