Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China
Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipita...
Ausführliche Beschreibung
Autor*in: |
Mengjing Guo [verfasserIn] Jing Li [verfasserIn] Yongsheng Wang [verfasserIn] Qiubo Long [verfasserIn] Peng Bai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Atmosphere - MDPI AG, 2011, 10(2019), 9, p 542 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2019 ; number:9, p 542 |
Links: |
---|
DOI / URN: |
10.3390/atmos10090542 |
---|
Katalog-ID: |
DOAJ013057421 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ013057421 | ||
003 | DE-627 | ||
005 | 20230502122518.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/atmos10090542 |2 doi | |
035 | |a (DE-627)DOAJ013057421 | ||
035 | |a (DE-599)DOAJ456cc7590097401d891eddf05b6d5ed9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC851-999 | |
100 | 0 | |a Mengjing Guo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk. | ||
650 | 4 | |a SPEI | |
650 | 4 | |a meteorological drought | |
650 | 4 | |a drought evolution | |
650 | 4 | |a drought risk assessment | |
653 | 0 | |a Meteorology. Climatology | |
700 | 0 | |a Jing Li |e verfasserin |4 aut | |
700 | 0 | |a Yongsheng Wang |e verfasserin |4 aut | |
700 | 0 | |a Qiubo Long |e verfasserin |4 aut | |
700 | 0 | |a Peng Bai |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmosphere |d MDPI AG, 2011 |g 10(2019), 9, p 542 |w (DE-627)657584010 |w (DE-600)2605928-9 |x 20734433 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2019 |g number:9, p 542 |
856 | 4 | 0 | |u https://doi.org/10.3390/atmos10090542 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/456cc7590097401d891eddf05b6d5ed9 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4433/10/9/542 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4433 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2019 |e 9, p 542 |
author_variant |
m g mg j l jl y w yw q l ql p b pb |
---|---|
matchkey_str |
article:20734433:2019----::ptoeprlaitosfeerlgclruhsntesesetoarcluadogtikn |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QC |
publishDate |
2019 |
allfields |
10.3390/atmos10090542 doi (DE-627)DOAJ013057421 (DE-599)DOAJ456cc7590097401d891eddf05b6d5ed9 DE-627 ger DE-627 rakwb eng QC851-999 Mengjing Guo verfasserin aut Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk. SPEI meteorological drought drought evolution drought risk assessment Meteorology. Climatology Jing Li verfasserin aut Yongsheng Wang verfasserin aut Qiubo Long verfasserin aut Peng Bai verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 9, p 542 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:9, p 542 https://doi.org/10.3390/atmos10090542 kostenfrei https://doaj.org/article/456cc7590097401d891eddf05b6d5ed9 kostenfrei https://www.mdpi.com/2073-4433/10/9/542 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 9, p 542 |
spelling |
10.3390/atmos10090542 doi (DE-627)DOAJ013057421 (DE-599)DOAJ456cc7590097401d891eddf05b6d5ed9 DE-627 ger DE-627 rakwb eng QC851-999 Mengjing Guo verfasserin aut Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk. SPEI meteorological drought drought evolution drought risk assessment Meteorology. Climatology Jing Li verfasserin aut Yongsheng Wang verfasserin aut Qiubo Long verfasserin aut Peng Bai verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 9, p 542 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:9, p 542 https://doi.org/10.3390/atmos10090542 kostenfrei https://doaj.org/article/456cc7590097401d891eddf05b6d5ed9 kostenfrei https://www.mdpi.com/2073-4433/10/9/542 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 9, p 542 |
allfields_unstemmed |
10.3390/atmos10090542 doi (DE-627)DOAJ013057421 (DE-599)DOAJ456cc7590097401d891eddf05b6d5ed9 DE-627 ger DE-627 rakwb eng QC851-999 Mengjing Guo verfasserin aut Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk. SPEI meteorological drought drought evolution drought risk assessment Meteorology. Climatology Jing Li verfasserin aut Yongsheng Wang verfasserin aut Qiubo Long verfasserin aut Peng Bai verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 9, p 542 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:9, p 542 https://doi.org/10.3390/atmos10090542 kostenfrei https://doaj.org/article/456cc7590097401d891eddf05b6d5ed9 kostenfrei https://www.mdpi.com/2073-4433/10/9/542 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 9, p 542 |
allfieldsGer |
10.3390/atmos10090542 doi (DE-627)DOAJ013057421 (DE-599)DOAJ456cc7590097401d891eddf05b6d5ed9 DE-627 ger DE-627 rakwb eng QC851-999 Mengjing Guo verfasserin aut Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk. SPEI meteorological drought drought evolution drought risk assessment Meteorology. Climatology Jing Li verfasserin aut Yongsheng Wang verfasserin aut Qiubo Long verfasserin aut Peng Bai verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 9, p 542 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:9, p 542 https://doi.org/10.3390/atmos10090542 kostenfrei https://doaj.org/article/456cc7590097401d891eddf05b6d5ed9 kostenfrei https://www.mdpi.com/2073-4433/10/9/542 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 9, p 542 |
allfieldsSound |
10.3390/atmos10090542 doi (DE-627)DOAJ013057421 (DE-599)DOAJ456cc7590097401d891eddf05b6d5ed9 DE-627 ger DE-627 rakwb eng QC851-999 Mengjing Guo verfasserin aut Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk. SPEI meteorological drought drought evolution drought risk assessment Meteorology. Climatology Jing Li verfasserin aut Yongsheng Wang verfasserin aut Qiubo Long verfasserin aut Peng Bai verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 9, p 542 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:9, p 542 https://doi.org/10.3390/atmos10090542 kostenfrei https://doaj.org/article/456cc7590097401d891eddf05b6d5ed9 kostenfrei https://www.mdpi.com/2073-4433/10/9/542 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 9, p 542 |
language |
English |
source |
In Atmosphere 10(2019), 9, p 542 volume:10 year:2019 number:9, p 542 |
sourceStr |
In Atmosphere 10(2019), 9, p 542 volume:10 year:2019 number:9, p 542 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
SPEI meteorological drought drought evolution drought risk assessment Meteorology. Climatology |
isfreeaccess_bool |
true |
container_title |
Atmosphere |
authorswithroles_txt_mv |
Mengjing Guo @@aut@@ Jing Li @@aut@@ Yongsheng Wang @@aut@@ Qiubo Long @@aut@@ Peng Bai @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
657584010 |
id |
DOAJ013057421 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013057421</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos10090542</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013057421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ456cc7590097401d891eddf05b6d5ed9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mengjing Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPEI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">meteorological drought</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drought evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drought risk assessment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongsheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiubo Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">10(2019), 9, p 542</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:9, p 542</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos10090542</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/456cc7590097401d891eddf05b6d5ed9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/10/9/542</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">9, p 542</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mengjing Guo |
spellingShingle |
Mengjing Guo misc QC851-999 misc SPEI misc meteorological drought misc drought evolution misc drought risk assessment misc Meteorology. Climatology Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China |
authorStr |
Mengjing Guo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657584010 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC851-999 |
illustrated |
Not Illustrated |
issn |
20734433 |
topic_title |
QC851-999 Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China SPEI meteorological drought drought evolution drought risk assessment |
topic |
misc QC851-999 misc SPEI misc meteorological drought misc drought evolution misc drought risk assessment misc Meteorology. Climatology |
topic_unstemmed |
misc QC851-999 misc SPEI misc meteorological drought misc drought evolution misc drought risk assessment misc Meteorology. Climatology |
topic_browse |
misc QC851-999 misc SPEI misc meteorological drought misc drought evolution misc drought risk assessment misc Meteorology. Climatology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmosphere |
hierarchy_parent_id |
657584010 |
hierarchy_top_title |
Atmosphere |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657584010 (DE-600)2605928-9 |
title |
Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China |
ctrlnum |
(DE-627)DOAJ013057421 (DE-599)DOAJ456cc7590097401d891eddf05b6d5ed9 |
title_full |
Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China |
author_sort |
Mengjing Guo |
journal |
Atmosphere |
journalStr |
Atmosphere |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Mengjing Guo Jing Li Yongsheng Wang Qiubo Long Peng Bai |
container_volume |
10 |
class |
QC851-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Mengjing Guo |
doi_str_mv |
10.3390/atmos10090542 |
author2-role |
verfasserin |
title_sort |
spatiotemporal variations of meteorological droughts and the assessments of agricultural drought risk in a typical agricultural province of china |
callnumber |
QC851-999 |
title_auth |
Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China |
abstract |
Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk. |
abstractGer |
Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk. |
abstract_unstemmed |
Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 542 |
title_short |
Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China |
url |
https://doi.org/10.3390/atmos10090542 https://doaj.org/article/456cc7590097401d891eddf05b6d5ed9 https://www.mdpi.com/2073-4433/10/9/542 https://doaj.org/toc/2073-4433 |
remote_bool |
true |
author2 |
Jing Li Yongsheng Wang Qiubo Long Peng Bai |
author2Str |
Jing Li Yongsheng Wang Qiubo Long Peng Bai |
ppnlink |
657584010 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/atmos10090542 |
callnumber-a |
QC851-999 |
up_date |
2024-07-03T15:32:06.711Z |
_version_ |
1803572453532762112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013057421</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos10090542</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013057421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ456cc7590097401d891eddf05b6d5ed9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mengjing Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPEI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">meteorological drought</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drought evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drought risk assessment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongsheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiubo Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">10(2019), 9, p 542</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:9, p 542</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos10090542</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/456cc7590097401d891eddf05b6d5ed9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/10/9/542</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">9, p 542</subfield></datafield></record></collection>
|
score |
7.40131 |