Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms
We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bou...
Ausführliche Beschreibung
Autor*in: |
Bos Joppe W. [verfasserIn] Dudeanu Alina [verfasserIn] Jetchev Dimitar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Mathematical Cryptology - De Gruyter, 2020, 8(2014), 1, Seite 71-92 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2014 ; number:1 ; pages:71-92 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1515/jmc-2012-0032 |
---|
Katalog-ID: |
DOAJ013306693 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ013306693 | ||
003 | DE-627 | ||
005 | 20230307031251.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/jmc-2012-0032 |2 doi | |
035 | |a (DE-627)DOAJ013306693 | ||
035 | |a (DE-599)DOAJa8a71bc77d154ecfa5c52c572a4c1ff6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Bos Joppe W. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group $\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound (| |)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log| |$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand. | ||
650 | 4 | |a pollard rho | |
650 | 4 | |a additive walk | |
650 | 4 | |a collision bound | |
650 | 4 | |a random walk | |
650 | 4 | |a mixing times | |
650 | 4 | |a 94a60 | |
650 | 4 | |a 05c81 | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Dudeanu Alina |e verfasserin |4 aut | |
700 | 0 | |a Jetchev Dimitar |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Mathematical Cryptology |d De Gruyter, 2020 |g 8(2014), 1, Seite 71-92 |w (DE-627)527640387 |w (DE-600)2278189-4 |x 18622984 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2014 |g number:1 |g pages:71-92 |
856 | 4 | 0 | |u https://doi.org/10.1515/jmc-2012-0032 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a8a71bc77d154ecfa5c52c572a4c1ff6 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/jmc-2012-0032 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1862-2976 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1862-2984 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2014 |e 1 |h 71-92 |
author_variant |
b j w bjw d a da j d jd |
---|---|
matchkey_str |
article:18622984:2014----::olsobudfrhadtvpladhagrtmosli |
hierarchy_sort_str |
2014 |
callnumber-subject-code |
QA |
publishDate |
2014 |
allfields |
10.1515/jmc-2012-0032 doi (DE-627)DOAJ013306693 (DE-599)DOAJa8a71bc77d154ecfa5c52c572a4c1ff6 DE-627 ger DE-627 rakwb eng QA1-939 Bos Joppe W. verfasserin aut Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand. pollard rho additive walk collision bound random walk mixing times 94a60 05c81 Mathematics Dudeanu Alina verfasserin aut Jetchev Dimitar verfasserin aut In Journal of Mathematical Cryptology De Gruyter, 2020 8(2014), 1, Seite 71-92 (DE-627)527640387 (DE-600)2278189-4 18622984 nnns volume:8 year:2014 number:1 pages:71-92 https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/article/a8a71bc77d154ecfa5c52c572a4c1ff6 kostenfrei https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/toc/1862-2976 Journal toc kostenfrei https://doaj.org/toc/1862-2984 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 1 71-92 |
spelling |
10.1515/jmc-2012-0032 doi (DE-627)DOAJ013306693 (DE-599)DOAJa8a71bc77d154ecfa5c52c572a4c1ff6 DE-627 ger DE-627 rakwb eng QA1-939 Bos Joppe W. verfasserin aut Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand. pollard rho additive walk collision bound random walk mixing times 94a60 05c81 Mathematics Dudeanu Alina verfasserin aut Jetchev Dimitar verfasserin aut In Journal of Mathematical Cryptology De Gruyter, 2020 8(2014), 1, Seite 71-92 (DE-627)527640387 (DE-600)2278189-4 18622984 nnns volume:8 year:2014 number:1 pages:71-92 https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/article/a8a71bc77d154ecfa5c52c572a4c1ff6 kostenfrei https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/toc/1862-2976 Journal toc kostenfrei https://doaj.org/toc/1862-2984 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 1 71-92 |
allfields_unstemmed |
10.1515/jmc-2012-0032 doi (DE-627)DOAJ013306693 (DE-599)DOAJa8a71bc77d154ecfa5c52c572a4c1ff6 DE-627 ger DE-627 rakwb eng QA1-939 Bos Joppe W. verfasserin aut Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand. pollard rho additive walk collision bound random walk mixing times 94a60 05c81 Mathematics Dudeanu Alina verfasserin aut Jetchev Dimitar verfasserin aut In Journal of Mathematical Cryptology De Gruyter, 2020 8(2014), 1, Seite 71-92 (DE-627)527640387 (DE-600)2278189-4 18622984 nnns volume:8 year:2014 number:1 pages:71-92 https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/article/a8a71bc77d154ecfa5c52c572a4c1ff6 kostenfrei https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/toc/1862-2976 Journal toc kostenfrei https://doaj.org/toc/1862-2984 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 1 71-92 |
allfieldsGer |
10.1515/jmc-2012-0032 doi (DE-627)DOAJ013306693 (DE-599)DOAJa8a71bc77d154ecfa5c52c572a4c1ff6 DE-627 ger DE-627 rakwb eng QA1-939 Bos Joppe W. verfasserin aut Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand. pollard rho additive walk collision bound random walk mixing times 94a60 05c81 Mathematics Dudeanu Alina verfasserin aut Jetchev Dimitar verfasserin aut In Journal of Mathematical Cryptology De Gruyter, 2020 8(2014), 1, Seite 71-92 (DE-627)527640387 (DE-600)2278189-4 18622984 nnns volume:8 year:2014 number:1 pages:71-92 https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/article/a8a71bc77d154ecfa5c52c572a4c1ff6 kostenfrei https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/toc/1862-2976 Journal toc kostenfrei https://doaj.org/toc/1862-2984 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 1 71-92 |
allfieldsSound |
10.1515/jmc-2012-0032 doi (DE-627)DOAJ013306693 (DE-599)DOAJa8a71bc77d154ecfa5c52c572a4c1ff6 DE-627 ger DE-627 rakwb eng QA1-939 Bos Joppe W. verfasserin aut Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand. pollard rho additive walk collision bound random walk mixing times 94a60 05c81 Mathematics Dudeanu Alina verfasserin aut Jetchev Dimitar verfasserin aut In Journal of Mathematical Cryptology De Gruyter, 2020 8(2014), 1, Seite 71-92 (DE-627)527640387 (DE-600)2278189-4 18622984 nnns volume:8 year:2014 number:1 pages:71-92 https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/article/a8a71bc77d154ecfa5c52c572a4c1ff6 kostenfrei https://doi.org/10.1515/jmc-2012-0032 kostenfrei https://doaj.org/toc/1862-2976 Journal toc kostenfrei https://doaj.org/toc/1862-2984 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 1 71-92 |
language |
English |
source |
In Journal of Mathematical Cryptology 8(2014), 1, Seite 71-92 volume:8 year:2014 number:1 pages:71-92 |
sourceStr |
In Journal of Mathematical Cryptology 8(2014), 1, Seite 71-92 volume:8 year:2014 number:1 pages:71-92 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
pollard rho additive walk collision bound random walk mixing times 94a60 05c81 Mathematics |
isfreeaccess_bool |
true |
container_title |
Journal of Mathematical Cryptology |
authorswithroles_txt_mv |
Bos Joppe W. @@aut@@ Dudeanu Alina @@aut@@ Jetchev Dimitar @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
527640387 |
id |
DOAJ013306693 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013306693</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307031251.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/jmc-2012-0032</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013306693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa8a71bc77d154ecfa5c52c572a4c1ff6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bos Joppe W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pollard rho</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">additive walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">collision bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixing times</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">94a60</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">05c81</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dudeanu Alina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jetchev Dimitar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Mathematical Cryptology</subfield><subfield code="d">De Gruyter, 2020</subfield><subfield code="g">8(2014), 1, Seite 71-92</subfield><subfield code="w">(DE-627)527640387</subfield><subfield code="w">(DE-600)2278189-4</subfield><subfield code="x">18622984</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:71-92</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/jmc-2012-0032</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a8a71bc77d154ecfa5c52c572a4c1ff6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/jmc-2012-0032</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1862-2976</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1862-2984</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="h">71-92</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Bos Joppe W. |
spellingShingle |
Bos Joppe W. misc QA1-939 misc pollard rho misc additive walk misc collision bound misc random walk misc mixing times misc 94a60 misc 05c81 misc Mathematics Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms |
authorStr |
Bos Joppe W. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)527640387 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
18622984 |
topic_title |
QA1-939 Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms pollard rho additive walk collision bound random walk mixing times 94a60 05c81 |
topic |
misc QA1-939 misc pollard rho misc additive walk misc collision bound misc random walk misc mixing times misc 94a60 misc 05c81 misc Mathematics |
topic_unstemmed |
misc QA1-939 misc pollard rho misc additive walk misc collision bound misc random walk misc mixing times misc 94a60 misc 05c81 misc Mathematics |
topic_browse |
misc QA1-939 misc pollard rho misc additive walk misc collision bound misc random walk misc mixing times misc 94a60 misc 05c81 misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Mathematical Cryptology |
hierarchy_parent_id |
527640387 |
hierarchy_top_title |
Journal of Mathematical Cryptology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)527640387 (DE-600)2278189-4 |
title |
Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms |
ctrlnum |
(DE-627)DOAJ013306693 (DE-599)DOAJa8a71bc77d154ecfa5c52c572a4c1ff6 |
title_full |
Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms |
author_sort |
Bos Joppe W. |
journal |
Journal of Mathematical Cryptology |
journalStr |
Journal of Mathematical Cryptology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
71 |
author_browse |
Bos Joppe W. Dudeanu Alina Jetchev Dimitar |
container_volume |
8 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Bos Joppe W. |
doi_str_mv |
10.1515/jmc-2012-0032 |
author2-role |
verfasserin |
title_sort |
collision bounds for the additive pollard rho algorithm for solving discrete logarithms |
callnumber |
QA1-939 |
title_auth |
Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms |
abstract |
We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand. |
abstractGer |
We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand. |
abstract_unstemmed |
We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms |
url |
https://doi.org/10.1515/jmc-2012-0032 https://doaj.org/article/a8a71bc77d154ecfa5c52c572a4c1ff6 https://doaj.org/toc/1862-2976 https://doaj.org/toc/1862-2984 |
remote_bool |
true |
author2 |
Dudeanu Alina Jetchev Dimitar |
author2Str |
Dudeanu Alina Jetchev Dimitar |
ppnlink |
527640387 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/jmc-2012-0032 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T16:55:17.776Z |
_version_ |
1803577687043735552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013306693</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307031251.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/jmc-2012-0032</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013306693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa8a71bc77d154ecfa5c52c572a4c1ff6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bos Joppe W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group 𝐆$\mathbf {G}$. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound 𝒪(|𝐆|)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log|𝐆|$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pollard rho</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">additive walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">collision bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixing times</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">94a60</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">05c81</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dudeanu Alina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jetchev Dimitar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Mathematical Cryptology</subfield><subfield code="d">De Gruyter, 2020</subfield><subfield code="g">8(2014), 1, Seite 71-92</subfield><subfield code="w">(DE-627)527640387</subfield><subfield code="w">(DE-600)2278189-4</subfield><subfield code="x">18622984</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:71-92</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/jmc-2012-0032</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a8a71bc77d154ecfa5c52c572a4c1ff6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/jmc-2012-0032</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1862-2976</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1862-2984</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="h">71-92</subfield></datafield></record></collection>
|
score |
7.402011 |