<b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b<
Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub&...
Ausführliche Beschreibung
Autor*in: |
E. Vessally [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Bulletin of the Chemical Society of Ethiopia - Chemical Society of Ethiopia, 2017, 23(2009), 2, Seite 223-229 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2009 ; number:2 ; pages:223-229 |
Links: |
---|
Katalog-ID: |
DOAJ013468278 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ013468278 | ||
003 | DE-627 | ||
005 | 20230503060620.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2009 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ013468278 | ||
035 | |a (DE-599)DOAJ25e4019e5312465f9e78b872d503c117 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a E. Vessally |e verfasserin |4 aut | |
245 | 1 | 0 | |a <b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed. | ||
650 | 4 | |a C<sub<2</sub<H<sub<2</sub<M | |
650 | 4 | |a C<sub<4</sub<H<sub<4</sub<M | |
650 | 4 | |a C<sub<6</sub<H<sub<6</sub<M | |
650 | 4 | |a Singlet-triplet gaps | |
650 | 4 | |a Stability | |
653 | 0 | |a Chemistry | |
773 | 0 | 8 | |i In |t Bulletin of the Chemical Society of Ethiopia |d Chemical Society of Ethiopia, 2017 |g 23(2009), 2, Seite 223-229 |w (DE-627)358952549 |w (DE-600)2097332-9 |x 1726801X |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2009 |g number:2 |g pages:223-229 |
856 | 4 | 0 | |u https://doaj.org/article/25e4019e5312465f9e78b872d503c117 |z kostenfrei |
856 | 4 | 0 | |u http://www.ajol.info/index.php/bcse/article/view/44965 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1011-3924 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1726-801X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2009 |e 2 |h 223-229 |
author_variant |
e v ev |
---|---|
matchkey_str |
article:1726801X:2009----::teigetiltnryaidvlntreiensvnebrdylcsbsbsbsbcu4uhu4um |
hierarchy_sort_str |
2009 |
callnumber-subject-code |
QD |
publishDate |
2009 |
allfields |
(DE-627)DOAJ013468278 (DE-599)DOAJ25e4019e5312465f9e78b872d503c117 DE-627 ger DE-627 rakwb eng QD1-999 E. Vessally verfasserin aut <b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed. C<sub<2</sub<H<sub<2</sub<M C<sub<4</sub<H<sub<4</sub<M C<sub<6</sub<H<sub<6</sub<M Singlet-triplet gaps Stability Chemistry In Bulletin of the Chemical Society of Ethiopia Chemical Society of Ethiopia, 2017 23(2009), 2, Seite 223-229 (DE-627)358952549 (DE-600)2097332-9 1726801X nnns volume:23 year:2009 number:2 pages:223-229 https://doaj.org/article/25e4019e5312465f9e78b872d503c117 kostenfrei http://www.ajol.info/index.php/bcse/article/view/44965 kostenfrei https://doaj.org/toc/1011-3924 Journal toc kostenfrei https://doaj.org/toc/1726-801X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2009 2 223-229 |
spelling |
(DE-627)DOAJ013468278 (DE-599)DOAJ25e4019e5312465f9e78b872d503c117 DE-627 ger DE-627 rakwb eng QD1-999 E. Vessally verfasserin aut <b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed. C<sub<2</sub<H<sub<2</sub<M C<sub<4</sub<H<sub<4</sub<M C<sub<6</sub<H<sub<6</sub<M Singlet-triplet gaps Stability Chemistry In Bulletin of the Chemical Society of Ethiopia Chemical Society of Ethiopia, 2017 23(2009), 2, Seite 223-229 (DE-627)358952549 (DE-600)2097332-9 1726801X nnns volume:23 year:2009 number:2 pages:223-229 https://doaj.org/article/25e4019e5312465f9e78b872d503c117 kostenfrei http://www.ajol.info/index.php/bcse/article/view/44965 kostenfrei https://doaj.org/toc/1011-3924 Journal toc kostenfrei https://doaj.org/toc/1726-801X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2009 2 223-229 |
allfields_unstemmed |
(DE-627)DOAJ013468278 (DE-599)DOAJ25e4019e5312465f9e78b872d503c117 DE-627 ger DE-627 rakwb eng QD1-999 E. Vessally verfasserin aut <b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed. C<sub<2</sub<H<sub<2</sub<M C<sub<4</sub<H<sub<4</sub<M C<sub<6</sub<H<sub<6</sub<M Singlet-triplet gaps Stability Chemistry In Bulletin of the Chemical Society of Ethiopia Chemical Society of Ethiopia, 2017 23(2009), 2, Seite 223-229 (DE-627)358952549 (DE-600)2097332-9 1726801X nnns volume:23 year:2009 number:2 pages:223-229 https://doaj.org/article/25e4019e5312465f9e78b872d503c117 kostenfrei http://www.ajol.info/index.php/bcse/article/view/44965 kostenfrei https://doaj.org/toc/1011-3924 Journal toc kostenfrei https://doaj.org/toc/1726-801X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2009 2 223-229 |
allfieldsGer |
(DE-627)DOAJ013468278 (DE-599)DOAJ25e4019e5312465f9e78b872d503c117 DE-627 ger DE-627 rakwb eng QD1-999 E. Vessally verfasserin aut <b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed. C<sub<2</sub<H<sub<2</sub<M C<sub<4</sub<H<sub<4</sub<M C<sub<6</sub<H<sub<6</sub<M Singlet-triplet gaps Stability Chemistry In Bulletin of the Chemical Society of Ethiopia Chemical Society of Ethiopia, 2017 23(2009), 2, Seite 223-229 (DE-627)358952549 (DE-600)2097332-9 1726801X nnns volume:23 year:2009 number:2 pages:223-229 https://doaj.org/article/25e4019e5312465f9e78b872d503c117 kostenfrei http://www.ajol.info/index.php/bcse/article/view/44965 kostenfrei https://doaj.org/toc/1011-3924 Journal toc kostenfrei https://doaj.org/toc/1726-801X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2009 2 223-229 |
allfieldsSound |
(DE-627)DOAJ013468278 (DE-599)DOAJ25e4019e5312465f9e78b872d503c117 DE-627 ger DE-627 rakwb eng QD1-999 E. Vessally verfasserin aut <b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed. C<sub<2</sub<H<sub<2</sub<M C<sub<4</sub<H<sub<4</sub<M C<sub<6</sub<H<sub<6</sub<M Singlet-triplet gaps Stability Chemistry In Bulletin of the Chemical Society of Ethiopia Chemical Society of Ethiopia, 2017 23(2009), 2, Seite 223-229 (DE-627)358952549 (DE-600)2097332-9 1726801X nnns volume:23 year:2009 number:2 pages:223-229 https://doaj.org/article/25e4019e5312465f9e78b872d503c117 kostenfrei http://www.ajol.info/index.php/bcse/article/view/44965 kostenfrei https://doaj.org/toc/1011-3924 Journal toc kostenfrei https://doaj.org/toc/1726-801X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2009 2 223-229 |
language |
English |
source |
In Bulletin of the Chemical Society of Ethiopia 23(2009), 2, Seite 223-229 volume:23 year:2009 number:2 pages:223-229 |
sourceStr |
In Bulletin of the Chemical Society of Ethiopia 23(2009), 2, Seite 223-229 volume:23 year:2009 number:2 pages:223-229 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
C<sub<2</sub<H<sub<2</sub<M C<sub<4</sub<H<sub<4</sub<M C<sub<6</sub<H<sub<6</sub<M Singlet-triplet gaps Stability Chemistry |
isfreeaccess_bool |
true |
container_title |
Bulletin of the Chemical Society of Ethiopia |
authorswithroles_txt_mv |
E. Vessally @@aut@@ |
publishDateDaySort_date |
2009-01-01T00:00:00Z |
hierarchy_top_id |
358952549 |
id |
DOAJ013468278 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013468278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503060620.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013468278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ25e4019e5312465f9e78b872d503c117</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">E. Vessally</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C<sub<2</sub<H<sub<2</sub<M</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C<sub<4</sub<H<sub<4</sub<M</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C<sub<6</sub<H<sub<6</sub<M</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singlet-triplet gaps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Bulletin of the Chemical Society of Ethiopia</subfield><subfield code="d">Chemical Society of Ethiopia, 2017</subfield><subfield code="g">23(2009), 2, Seite 223-229</subfield><subfield code="w">(DE-627)358952549</subfield><subfield code="w">(DE-600)2097332-9</subfield><subfield code="x">1726801X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:223-229</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/25e4019e5312465f9e78b872d503c117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.ajol.info/index.php/bcse/article/view/44965</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1011-3924</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1726-801X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield><subfield code="h">223-229</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
E. Vessally |
spellingShingle |
E. Vessally misc QD1-999 misc C<sub<2</sub<H<sub<2</sub<M misc C<sub<4</sub<H<sub<4</sub<M misc C<sub<6</sub<H<sub<6</sub<M misc Singlet-triplet gaps misc Stability misc Chemistry <b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< |
authorStr |
E. Vessally |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)358952549 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
1726801X |
topic_title |
QD1-999 <b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< C<sub<2</sub<H<sub<2</sub<M C<sub<4</sub<H<sub<4</sub<M C<sub<6</sub<H<sub<6</sub<M Singlet-triplet gaps Stability |
topic |
misc QD1-999 misc C<sub<2</sub<H<sub<2</sub<M misc C<sub<4</sub<H<sub<4</sub<M misc C<sub<6</sub<H<sub<6</sub<M misc Singlet-triplet gaps misc Stability misc Chemistry |
topic_unstemmed |
misc QD1-999 misc C<sub<2</sub<H<sub<2</sub<M misc C<sub<4</sub<H<sub<4</sub<M misc C<sub<6</sub<H<sub<6</sub<M misc Singlet-triplet gaps misc Stability misc Chemistry |
topic_browse |
misc QD1-999 misc C<sub<2</sub<H<sub<2</sub<M misc C<sub<4</sub<H<sub<4</sub<M misc C<sub<6</sub<H<sub<6</sub<M misc Singlet-triplet gaps misc Stability misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Bulletin of the Chemical Society of Ethiopia |
hierarchy_parent_id |
358952549 |
hierarchy_top_title |
Bulletin of the Chemical Society of Ethiopia |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)358952549 (DE-600)2097332-9 |
title |
<b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< |
ctrlnum |
(DE-627)DOAJ013468278 (DE-599)DOAJ25e4019e5312465f9e78b872d503c117 |
title_full |
<b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< |
author_sort |
E. Vessally |
journal |
Bulletin of the Chemical Society of Ethiopia |
journalStr |
Bulletin of the Chemical Society of Ethiopia |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
223 |
author_browse |
E. Vessally |
container_volume |
23 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
E. Vessally |
title_sort |
<b<the singlet-triplet energy gap in divalent three, five and seven-membered cyclic c<sub<2</sub<h<sub<2</sub<m, c<sub<4</sub<h<sub<4</sub<m and c<sub<6</sub<h<sub<6</sub<m (m = c, si, ge, sn and pb)</b< |
callnumber |
QD1-999 |
title_auth |
<b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< |
abstract |
Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed. |
abstractGer |
Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed. |
abstract_unstemmed |
Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
<b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b< |
url |
https://doaj.org/article/25e4019e5312465f9e78b872d503c117 http://www.ajol.info/index.php/bcse/article/view/44965 https://doaj.org/toc/1011-3924 https://doaj.org/toc/1726-801X |
remote_bool |
true |
ppnlink |
358952549 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T17:48:04.290Z |
_version_ |
1803581007382708224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013468278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503060620.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013468278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ25e4019e5312465f9e78b872d503c117</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">E. Vessally</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><b<The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn AND Pb)</b<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Total energy gaps, ∆E<sub<t–s</sub<, enthalpy gaps, ∆H<sub<t–s</sub<, and Gibbs free energy gaps, ∆G<sub<t–s</sub<, between singlet (s) and triplet (t) states were calculated for three, five and seven-membered cyclic C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M (M = C, Si, Ge, Sn and Pb) at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆G<sub<t–s</sub<, for C<sub<2</sub<H<sub<2</sub<M (M = C, Si, Ge, Sn and Pb) are found to be increased in the order: C<sub<2</sub<H<sub<2</sub<Si < C<sub<2</sub<H<sub<2</sub<C < C<sub<2</sub<H<sub<2</sub<Ge < C<sub<2</sub<H<sub<2</sub<Sn < C<sub<2</sub<H<sub<2</sub<Pb. The ∆G<sub<t–s</sub< of C<sub<4</sub<H<sub<4</sub<M are found to be increased in the order: C<sub<4</sub<H<sub<4</sub<Pb < C<sub<4</sub<H<sub<4</sub<Sn < C<sub<4</sub<H<sub<4</sub<Ge < C<sub<4</sub<H<sub<4</sub<Si < C<sub<4</sub<H<sub<4</sub<C. Also, the ∆G<sub<t–s</sub< of C<sub<6</sub<H<sub<6</sub<M are determined in the order: C<sub<6</sub<H<sub<6</sub<Pb < C<sub<6</sub<H<sub<6</sub<Ge ≥ C<sub<6</sub<H<sub<6</sub<Sn < C<sub<6</sub<H<sub<6</sub<Si < C<sub<6</sub<H<sub<6</sub<C. The most stable conformers of C<sub<2</sub<H<sub<2</sub<M, C<sub<4</sub<H<sub<4</sub<M and C<sub<6</sub<H<sub<6</sub<M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C<sub<2</sub<H<sub<2</sub<M</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C<sub<4</sub<H<sub<4</sub<M</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C<sub<6</sub<H<sub<6</sub<M</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singlet-triplet gaps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Bulletin of the Chemical Society of Ethiopia</subfield><subfield code="d">Chemical Society of Ethiopia, 2017</subfield><subfield code="g">23(2009), 2, Seite 223-229</subfield><subfield code="w">(DE-627)358952549</subfield><subfield code="w">(DE-600)2097332-9</subfield><subfield code="x">1726801X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:223-229</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/25e4019e5312465f9e78b872d503c117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.ajol.info/index.php/bcse/article/view/44965</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1011-3924</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1726-801X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield><subfield code="h">223-229</subfield></datafield></record></collection>
|
score |
7.4028378 |