High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks
Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, com...
Ausführliche Beschreibung
Autor*in: |
Liang Liu [verfasserIn] Hao Lu [verfasserIn] Yanan Li [verfasserIn] Zhiguo Cao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
In: Plant Phenomics - American Association for the Advancement of Science (AAAS), 2019, (2020) |
---|---|
Übergeordnetes Werk: |
year:2020 |
Links: |
---|
DOI / URN: |
10.34133/2020/1375957 |
---|
Katalog-ID: |
DOAJ01353338X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ01353338X | ||
003 | DE-627 | ||
005 | 20230501193326.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.34133/2020/1375957 |2 doi | |
035 | |a (DE-627)DOAJ01353338X | ||
035 | |a (DE-599)DOAJ054011d29ae44c37bc0d96e09304c499 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SB1-1110 | |
050 | 0 | |a QH426-470 | |
050 | 0 | |a QK1-989 | |
100 | 0 | |a Liang Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net. | ||
653 | 0 | |a Plant culture | |
653 | 0 | |a Genetics | |
653 | 0 | |a Botany | |
700 | 0 | |a Hao Lu |e verfasserin |4 aut | |
700 | 0 | |a Yanan Li |e verfasserin |4 aut | |
700 | 0 | |a Zhiguo Cao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plant Phenomics |d American Association for the Advancement of Science (AAAS), 2019 |g (2020) |w (DE-627)1662971729 |x 26436515 |7 nnns |
773 | 1 | 8 | |g year:2020 |
856 | 4 | 0 | |u https://doi.org/10.34133/2020/1375957 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/054011d29ae44c37bc0d96e09304c499 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.34133/2020/1375957 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2643-6515 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2020 |
author_variant |
l l ll h l hl y l yl z c zc |
---|---|
matchkey_str |
article:26436515:2020----::ihhogptieestetmtofotaslnainoilrns |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
SB |
publishDate |
2020 |
allfields |
10.34133/2020/1375957 doi (DE-627)DOAJ01353338X (DE-599)DOAJ054011d29ae44c37bc0d96e09304c499 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Liang Liu verfasserin aut High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net. Plant culture Genetics Botany Hao Lu verfasserin aut Yanan Li verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2020) (DE-627)1662971729 26436515 nnns year:2020 https://doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/article/054011d29ae44c37bc0d96e09304c499 kostenfrei http://dx.doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
spelling |
10.34133/2020/1375957 doi (DE-627)DOAJ01353338X (DE-599)DOAJ054011d29ae44c37bc0d96e09304c499 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Liang Liu verfasserin aut High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net. Plant culture Genetics Botany Hao Lu verfasserin aut Yanan Li verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2020) (DE-627)1662971729 26436515 nnns year:2020 https://doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/article/054011d29ae44c37bc0d96e09304c499 kostenfrei http://dx.doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
allfields_unstemmed |
10.34133/2020/1375957 doi (DE-627)DOAJ01353338X (DE-599)DOAJ054011d29ae44c37bc0d96e09304c499 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Liang Liu verfasserin aut High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net. Plant culture Genetics Botany Hao Lu verfasserin aut Yanan Li verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2020) (DE-627)1662971729 26436515 nnns year:2020 https://doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/article/054011d29ae44c37bc0d96e09304c499 kostenfrei http://dx.doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
allfieldsGer |
10.34133/2020/1375957 doi (DE-627)DOAJ01353338X (DE-599)DOAJ054011d29ae44c37bc0d96e09304c499 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Liang Liu verfasserin aut High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net. Plant culture Genetics Botany Hao Lu verfasserin aut Yanan Li verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2020) (DE-627)1662971729 26436515 nnns year:2020 https://doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/article/054011d29ae44c37bc0d96e09304c499 kostenfrei http://dx.doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
allfieldsSound |
10.34133/2020/1375957 doi (DE-627)DOAJ01353338X (DE-599)DOAJ054011d29ae44c37bc0d96e09304c499 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Liang Liu verfasserin aut High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net. Plant culture Genetics Botany Hao Lu verfasserin aut Yanan Li verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2020) (DE-627)1662971729 26436515 nnns year:2020 https://doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/article/054011d29ae44c37bc0d96e09304c499 kostenfrei http://dx.doi.org/10.34133/2020/1375957 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
language |
English |
source |
In Plant Phenomics (2020) year:2020 |
sourceStr |
In Plant Phenomics (2020) year:2020 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Plant culture Genetics Botany |
isfreeaccess_bool |
true |
container_title |
Plant Phenomics |
authorswithroles_txt_mv |
Liang Liu @@aut@@ Hao Lu @@aut@@ Yanan Li @@aut@@ Zhiguo Cao @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
1662971729 |
id |
DOAJ01353338X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01353338X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501193326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.34133/2020/1375957</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01353338X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ054011d29ae44c37bc0d96e09304c499</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguo Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plant Phenomics</subfield><subfield code="d">American Association for the Advancement of Science (AAAS), 2019</subfield><subfield code="g">(2020)</subfield><subfield code="w">(DE-627)1662971729</subfield><subfield code="x">26436515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.34133/2020/1375957</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/054011d29ae44c37bc0d96e09304c499</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.34133/2020/1375957</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2643-6515</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Liang Liu |
spellingShingle |
Liang Liu misc SB1-1110 misc QH426-470 misc QK1-989 misc Plant culture misc Genetics misc Botany High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks |
authorStr |
Liang Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1662971729 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SB1-1110 |
illustrated |
Not Illustrated |
issn |
26436515 |
topic_title |
SB1-1110 QH426-470 QK1-989 High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks |
topic |
misc SB1-1110 misc QH426-470 misc QK1-989 misc Plant culture misc Genetics misc Botany |
topic_unstemmed |
misc SB1-1110 misc QH426-470 misc QK1-989 misc Plant culture misc Genetics misc Botany |
topic_browse |
misc SB1-1110 misc QH426-470 misc QK1-989 misc Plant culture misc Genetics misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plant Phenomics |
hierarchy_parent_id |
1662971729 |
hierarchy_top_title |
Plant Phenomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1662971729 |
title |
High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks |
ctrlnum |
(DE-627)DOAJ01353338X (DE-599)DOAJ054011d29ae44c37bc0d96e09304c499 |
title_full |
High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks |
author_sort |
Liang Liu |
journal |
Plant Phenomics |
journalStr |
Plant Phenomics |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Liang Liu Hao Lu Yanan Li Zhiguo Cao |
class |
SB1-1110 QH426-470 QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Liang Liu |
doi_str_mv |
10.34133/2020/1375957 |
author2-role |
verfasserin |
title_sort |
high-throughput rice density estimation from transplantation to tillering stages using deep networks |
callnumber |
SB1-1110 |
title_auth |
High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks |
abstract |
Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net. |
abstractGer |
Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net. |
abstract_unstemmed |
Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks |
url |
https://doi.org/10.34133/2020/1375957 https://doaj.org/article/054011d29ae44c37bc0d96e09304c499 http://dx.doi.org/10.34133/2020/1375957 https://doaj.org/toc/2643-6515 |
remote_bool |
true |
author2 |
Hao Lu Yanan Li Zhiguo Cao |
author2Str |
Hao Lu Yanan Li Zhiguo Cao |
ppnlink |
1662971729 |
callnumber-subject |
SB - Plant Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.34133/2020/1375957 |
callnumber-a |
SB1-1110 |
up_date |
2024-07-03T18:09:05.258Z |
_version_ |
1803582329599295488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01353338X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501193326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.34133/2020/1375957</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01353338X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ054011d29ae44c37bc0d96e09304c499</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC2Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC2Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC2Net follows a recent blockwise classification idea. We validate SFC2Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC2Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC2Net provides high-throughput processing capability, with 16.7 frames per second on 1024×1024 images. Our results suggest that manual rice counting can be safely replaced by SFC2Net at early growth stages. Code and models are available online at https://git.io/sfc2net.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguo Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plant Phenomics</subfield><subfield code="d">American Association for the Advancement of Science (AAAS), 2019</subfield><subfield code="g">(2020)</subfield><subfield code="w">(DE-627)1662971729</subfield><subfield code="x">26436515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.34133/2020/1375957</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/054011d29ae44c37bc0d96e09304c499</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.34133/2020/1375957</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2643-6515</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield></datafield></record></collection>
|
score |
7.4014435 |