Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection
Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the sel...
Ausführliche Beschreibung
Autor*in: |
Leian Liu [verfasserIn] Jichen Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 141170-141181 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:141170-141181 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3013066 |
---|
Katalog-ID: |
DOAJ013563483 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ013563483 | ||
003 | DE-627 | ||
005 | 20230310055338.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3013066 |2 doi | |
035 | |a (DE-627)DOAJ013563483 | ||
035 | |a (DE-599)DOAJf696df9e09184d0992732e97c6d19803 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Leian Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus. | ||
650 | 4 | |a Constant-Q transform | |
650 | 4 | |a anti-spoofing countermeasure | |
650 | 4 | |a automatic speaker verification | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jichen Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 141170-141181 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:141170-141181 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3013066 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f696df9e09184d0992732e97c6d19803 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9152815/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 141170-141181 |
author_variant |
l l ll j y jy |
---|---|
matchkey_str |
article:21693536:2020----::tdofaueopeetrtosaitceegadrniaifra |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3013066 doi (DE-627)DOAJ013563483 (DE-599)DOAJf696df9e09184d0992732e97c6d19803 DE-627 ger DE-627 rakwb eng TK1-9971 Leian Liu verfasserin aut Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus. Constant-Q transform anti-spoofing countermeasure automatic speaker verification Electrical engineering. Electronics. Nuclear engineering Jichen Yang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 141170-141181 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:141170-141181 https://doi.org/10.1109/ACCESS.2020.3013066 kostenfrei https://doaj.org/article/f696df9e09184d0992732e97c6d19803 kostenfrei https://ieeexplore.ieee.org/document/9152815/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 141170-141181 |
spelling |
10.1109/ACCESS.2020.3013066 doi (DE-627)DOAJ013563483 (DE-599)DOAJf696df9e09184d0992732e97c6d19803 DE-627 ger DE-627 rakwb eng TK1-9971 Leian Liu verfasserin aut Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus. Constant-Q transform anti-spoofing countermeasure automatic speaker verification Electrical engineering. Electronics. Nuclear engineering Jichen Yang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 141170-141181 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:141170-141181 https://doi.org/10.1109/ACCESS.2020.3013066 kostenfrei https://doaj.org/article/f696df9e09184d0992732e97c6d19803 kostenfrei https://ieeexplore.ieee.org/document/9152815/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 141170-141181 |
allfields_unstemmed |
10.1109/ACCESS.2020.3013066 doi (DE-627)DOAJ013563483 (DE-599)DOAJf696df9e09184d0992732e97c6d19803 DE-627 ger DE-627 rakwb eng TK1-9971 Leian Liu verfasserin aut Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus. Constant-Q transform anti-spoofing countermeasure automatic speaker verification Electrical engineering. Electronics. Nuclear engineering Jichen Yang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 141170-141181 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:141170-141181 https://doi.org/10.1109/ACCESS.2020.3013066 kostenfrei https://doaj.org/article/f696df9e09184d0992732e97c6d19803 kostenfrei https://ieeexplore.ieee.org/document/9152815/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 141170-141181 |
allfieldsGer |
10.1109/ACCESS.2020.3013066 doi (DE-627)DOAJ013563483 (DE-599)DOAJf696df9e09184d0992732e97c6d19803 DE-627 ger DE-627 rakwb eng TK1-9971 Leian Liu verfasserin aut Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus. Constant-Q transform anti-spoofing countermeasure automatic speaker verification Electrical engineering. Electronics. Nuclear engineering Jichen Yang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 141170-141181 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:141170-141181 https://doi.org/10.1109/ACCESS.2020.3013066 kostenfrei https://doaj.org/article/f696df9e09184d0992732e97c6d19803 kostenfrei https://ieeexplore.ieee.org/document/9152815/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 141170-141181 |
allfieldsSound |
10.1109/ACCESS.2020.3013066 doi (DE-627)DOAJ013563483 (DE-599)DOAJf696df9e09184d0992732e97c6d19803 DE-627 ger DE-627 rakwb eng TK1-9971 Leian Liu verfasserin aut Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus. Constant-Q transform anti-spoofing countermeasure automatic speaker verification Electrical engineering. Electronics. Nuclear engineering Jichen Yang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 141170-141181 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:141170-141181 https://doi.org/10.1109/ACCESS.2020.3013066 kostenfrei https://doaj.org/article/f696df9e09184d0992732e97c6d19803 kostenfrei https://ieeexplore.ieee.org/document/9152815/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 141170-141181 |
language |
English |
source |
In IEEE Access 8(2020), Seite 141170-141181 volume:8 year:2020 pages:141170-141181 |
sourceStr |
In IEEE Access 8(2020), Seite 141170-141181 volume:8 year:2020 pages:141170-141181 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Constant-Q transform anti-spoofing countermeasure automatic speaker verification Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Leian Liu @@aut@@ Jichen Yang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ013563483 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013563483</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310055338.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3013066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013563483</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf696df9e09184d0992732e97c6d19803</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Leian Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant-Q transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-spoofing countermeasure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic speaker verification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jichen Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 141170-141181</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:141170-141181</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3013066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f696df9e09184d0992732e97c6d19803</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9152815/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">141170-141181</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Leian Liu |
spellingShingle |
Leian Liu misc TK1-9971 misc Constant-Q transform misc anti-spoofing countermeasure misc automatic speaker verification misc Electrical engineering. Electronics. Nuclear engineering Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection |
authorStr |
Leian Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection Constant-Q transform anti-spoofing countermeasure automatic speaker verification |
topic |
misc TK1-9971 misc Constant-Q transform misc anti-spoofing countermeasure misc automatic speaker verification misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Constant-Q transform misc anti-spoofing countermeasure misc automatic speaker verification misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Constant-Q transform misc anti-spoofing countermeasure misc automatic speaker verification misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection |
ctrlnum |
(DE-627)DOAJ013563483 (DE-599)DOAJf696df9e09184d0992732e97c6d19803 |
title_full |
Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection |
author_sort |
Leian Liu |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
141170 |
author_browse |
Leian Liu Jichen Yang |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Leian Liu |
doi_str_mv |
10.1109/ACCESS.2020.3013066 |
author2-role |
verfasserin |
title_sort |
study on feature complementarity of statistics, energy, and principal information for spoofing detection |
callnumber |
TK1-9971 |
title_auth |
Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection |
abstract |
Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus. |
abstractGer |
Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus. |
abstract_unstemmed |
Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection |
url |
https://doi.org/10.1109/ACCESS.2020.3013066 https://doaj.org/article/f696df9e09184d0992732e97c6d19803 https://ieeexplore.ieee.org/document/9152815/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jichen Yang |
author2Str |
Jichen Yang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3013066 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T18:19:56.559Z |
_version_ |
1803583012533698564 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013563483</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310055338.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3013066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013563483</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf696df9e09184d0992732e97c6d19803</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Leian Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on Feature Complementarity of Statistics, Energy, and Principal Information for Spoofing Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conventional speaker verification systems become frail or incompetent while facing attack from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic speaker verification. It has been known that the salient feature is of a more important role rather than the selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band principal information (OPI), full-band principal information (FPI), short-term spectral statistics information (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed by investigating their information complementarity in this paper, the first one is constant-Q statistics-plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation of the proposed features. Experiments show that the proposed features can outperform some commonly used features meanwhile the proposed systems give better or comparable performance comparing with state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant-Q transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-spoofing countermeasure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic speaker verification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jichen Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 141170-141181</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:141170-141181</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3013066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f696df9e09184d0992732e97c6d19803</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9152815/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">141170-141181</subfield></datafield></record></collection>
|
score |
7.4028063 |