On the asymptotic stability of solutions of stochastic differential delay equations of second order
In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based...
Ausführliche Beschreibung
Autor*in: |
Osman Tunç [verfasserIn] Cemil Tunç [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
stochastic delay differential equation |
---|
Übergeordnetes Werk: |
In: Journal of Taibah University for Science - Taylor & Francis Group, 2016, 13(2019), 1, Seite 875-882 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2019 ; number:1 ; pages:875-882 |
Links: |
---|
DOI / URN: |
10.1080/16583655.2019.1652453 |
---|
Katalog-ID: |
DOAJ013590898 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ013590898 | ||
003 | DE-627 | ||
005 | 20230310055527.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/16583655.2019.1652453 |2 doi | |
035 | |a (DE-627)DOAJ013590898 | ||
035 | |a (DE-599)DOAJa13d903cda604621911d89a198377e98 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a Q1-390 | |
100 | 0 | |a Osman Tunç |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the asymptotic stability of solutions of stochastic differential delay equations of second order |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature. | ||
650 | 4 | |a stochastic delay differential equation | |
650 | 4 | |a second order | |
650 | 4 | |a stochastically stability | |
650 | 4 | |a stochastically asymptotically stability | |
650 | 4 | |a lyapunov-krasovskii functional | |
653 | 0 | |a Science (General) | |
700 | 0 | |a Cemil Tunç |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Taibah University for Science |d Taylor & Francis Group, 2016 |g 13(2019), 1, Seite 875-882 |w (DE-627)835589021 |w (DE-600)2834710-9 |x 16583655 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2019 |g number:1 |g pages:875-882 |
856 | 4 | 0 | |u https://doi.org/10.1080/16583655.2019.1652453 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a13d903cda604621911d89a198377e98 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1080/16583655.2019.1652453 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1658-3655 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2019 |e 1 |h 875-882 |
author_variant |
o t ot c t ct |
---|---|
matchkey_str |
article:16583655:2019----::nhaypoisaiiyfouinosohsidfeetadl |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
Q |
publishDate |
2019 |
allfields |
10.1080/16583655.2019.1652453 doi (DE-627)DOAJ013590898 (DE-599)DOAJa13d903cda604621911d89a198377e98 DE-627 ger DE-627 rakwb eng Q1-390 Osman Tunç verfasserin aut On the asymptotic stability of solutions of stochastic differential delay equations of second order 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature. stochastic delay differential equation second order stochastically stability stochastically asymptotically stability lyapunov-krasovskii functional Science (General) Cemil Tunç verfasserin aut In Journal of Taibah University for Science Taylor & Francis Group, 2016 13(2019), 1, Seite 875-882 (DE-627)835589021 (DE-600)2834710-9 16583655 nnns volume:13 year:2019 number:1 pages:875-882 https://doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/article/a13d903cda604621911d89a198377e98 kostenfrei http://dx.doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/toc/1658-3655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2019 1 875-882 |
spelling |
10.1080/16583655.2019.1652453 doi (DE-627)DOAJ013590898 (DE-599)DOAJa13d903cda604621911d89a198377e98 DE-627 ger DE-627 rakwb eng Q1-390 Osman Tunç verfasserin aut On the asymptotic stability of solutions of stochastic differential delay equations of second order 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature. stochastic delay differential equation second order stochastically stability stochastically asymptotically stability lyapunov-krasovskii functional Science (General) Cemil Tunç verfasserin aut In Journal of Taibah University for Science Taylor & Francis Group, 2016 13(2019), 1, Seite 875-882 (DE-627)835589021 (DE-600)2834710-9 16583655 nnns volume:13 year:2019 number:1 pages:875-882 https://doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/article/a13d903cda604621911d89a198377e98 kostenfrei http://dx.doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/toc/1658-3655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2019 1 875-882 |
allfields_unstemmed |
10.1080/16583655.2019.1652453 doi (DE-627)DOAJ013590898 (DE-599)DOAJa13d903cda604621911d89a198377e98 DE-627 ger DE-627 rakwb eng Q1-390 Osman Tunç verfasserin aut On the asymptotic stability of solutions of stochastic differential delay equations of second order 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature. stochastic delay differential equation second order stochastically stability stochastically asymptotically stability lyapunov-krasovskii functional Science (General) Cemil Tunç verfasserin aut In Journal of Taibah University for Science Taylor & Francis Group, 2016 13(2019), 1, Seite 875-882 (DE-627)835589021 (DE-600)2834710-9 16583655 nnns volume:13 year:2019 number:1 pages:875-882 https://doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/article/a13d903cda604621911d89a198377e98 kostenfrei http://dx.doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/toc/1658-3655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2019 1 875-882 |
allfieldsGer |
10.1080/16583655.2019.1652453 doi (DE-627)DOAJ013590898 (DE-599)DOAJa13d903cda604621911d89a198377e98 DE-627 ger DE-627 rakwb eng Q1-390 Osman Tunç verfasserin aut On the asymptotic stability of solutions of stochastic differential delay equations of second order 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature. stochastic delay differential equation second order stochastically stability stochastically asymptotically stability lyapunov-krasovskii functional Science (General) Cemil Tunç verfasserin aut In Journal of Taibah University for Science Taylor & Francis Group, 2016 13(2019), 1, Seite 875-882 (DE-627)835589021 (DE-600)2834710-9 16583655 nnns volume:13 year:2019 number:1 pages:875-882 https://doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/article/a13d903cda604621911d89a198377e98 kostenfrei http://dx.doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/toc/1658-3655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2019 1 875-882 |
allfieldsSound |
10.1080/16583655.2019.1652453 doi (DE-627)DOAJ013590898 (DE-599)DOAJa13d903cda604621911d89a198377e98 DE-627 ger DE-627 rakwb eng Q1-390 Osman Tunç verfasserin aut On the asymptotic stability of solutions of stochastic differential delay equations of second order 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature. stochastic delay differential equation second order stochastically stability stochastically asymptotically stability lyapunov-krasovskii functional Science (General) Cemil Tunç verfasserin aut In Journal of Taibah University for Science Taylor & Francis Group, 2016 13(2019), 1, Seite 875-882 (DE-627)835589021 (DE-600)2834710-9 16583655 nnns volume:13 year:2019 number:1 pages:875-882 https://doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/article/a13d903cda604621911d89a198377e98 kostenfrei http://dx.doi.org/10.1080/16583655.2019.1652453 kostenfrei https://doaj.org/toc/1658-3655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2019 1 875-882 |
language |
English |
source |
In Journal of Taibah University for Science 13(2019), 1, Seite 875-882 volume:13 year:2019 number:1 pages:875-882 |
sourceStr |
In Journal of Taibah University for Science 13(2019), 1, Seite 875-882 volume:13 year:2019 number:1 pages:875-882 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
stochastic delay differential equation second order stochastically stability stochastically asymptotically stability lyapunov-krasovskii functional Science (General) |
isfreeaccess_bool |
true |
container_title |
Journal of Taibah University for Science |
authorswithroles_txt_mv |
Osman Tunç @@aut@@ Cemil Tunç @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
835589021 |
id |
DOAJ013590898 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013590898</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310055527.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/16583655.2019.1652453</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013590898</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa13d903cda604621911d89a198377e98</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Osman Tunç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the asymptotic stability of solutions of stochastic differential delay equations of second order</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic delay differential equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">second order</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastically stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastically asymptotically stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lyapunov-krasovskii functional</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cemil Tunç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Taibah University for Science</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">13(2019), 1, Seite 875-882</subfield><subfield code="w">(DE-627)835589021</subfield><subfield code="w">(DE-600)2834710-9</subfield><subfield code="x">16583655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:875-882</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/16583655.2019.1652453</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a13d903cda604621911d89a198377e98</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/16583655.2019.1652453</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1658-3655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">875-882</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Osman Tunç |
spellingShingle |
Osman Tunç misc Q1-390 misc stochastic delay differential equation misc second order misc stochastically stability misc stochastically asymptotically stability misc lyapunov-krasovskii functional misc Science (General) On the asymptotic stability of solutions of stochastic differential delay equations of second order |
authorStr |
Osman Tunç |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)835589021 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
Q1-390 |
illustrated |
Not Illustrated |
issn |
16583655 |
topic_title |
Q1-390 On the asymptotic stability of solutions of stochastic differential delay equations of second order stochastic delay differential equation second order stochastically stability stochastically asymptotically stability lyapunov-krasovskii functional |
topic |
misc Q1-390 misc stochastic delay differential equation misc second order misc stochastically stability misc stochastically asymptotically stability misc lyapunov-krasovskii functional misc Science (General) |
topic_unstemmed |
misc Q1-390 misc stochastic delay differential equation misc second order misc stochastically stability misc stochastically asymptotically stability misc lyapunov-krasovskii functional misc Science (General) |
topic_browse |
misc Q1-390 misc stochastic delay differential equation misc second order misc stochastically stability misc stochastically asymptotically stability misc lyapunov-krasovskii functional misc Science (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Taibah University for Science |
hierarchy_parent_id |
835589021 |
hierarchy_top_title |
Journal of Taibah University for Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)835589021 (DE-600)2834710-9 |
title |
On the asymptotic stability of solutions of stochastic differential delay equations of second order |
ctrlnum |
(DE-627)DOAJ013590898 (DE-599)DOAJa13d903cda604621911d89a198377e98 |
title_full |
On the asymptotic stability of solutions of stochastic differential delay equations of second order |
author_sort |
Osman Tunç |
journal |
Journal of Taibah University for Science |
journalStr |
Journal of Taibah University for Science |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
875 |
author_browse |
Osman Tunç Cemil Tunç |
container_volume |
13 |
class |
Q1-390 |
format_se |
Elektronische Aufsätze |
author-letter |
Osman Tunç |
doi_str_mv |
10.1080/16583655.2019.1652453 |
author2-role |
verfasserin |
title_sort |
on the asymptotic stability of solutions of stochastic differential delay equations of second order |
callnumber |
Q1-390 |
title_auth |
On the asymptotic stability of solutions of stochastic differential delay equations of second order |
abstract |
In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature. |
abstractGer |
In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature. |
abstract_unstemmed |
In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On the asymptotic stability of solutions of stochastic differential delay equations of second order |
url |
https://doi.org/10.1080/16583655.2019.1652453 https://doaj.org/article/a13d903cda604621911d89a198377e98 http://dx.doi.org/10.1080/16583655.2019.1652453 https://doaj.org/toc/1658-3655 |
remote_bool |
true |
author2 |
Cemil Tunç |
author2Str |
Cemil Tunç |
ppnlink |
835589021 |
callnumber-subject |
Q - General Science |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/16583655.2019.1652453 |
callnumber-a |
Q1-390 |
up_date |
2024-07-03T18:29:08.403Z |
_version_ |
1803583591185121280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013590898</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310055527.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/16583655.2019.1652453</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013590898</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa13d903cda604621911d89a198377e98</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Osman Tunç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the asymptotic stability of solutions of stochastic differential delay equations of second order</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we consider a non-linear stochastic differential delay equation (SDDE) of second order. We derive new sufficient conditions which guarantee stochastically stability and stochastically asymptotically stability of the zero solution of that SDDE. Here, the technique of the proof is based on the definition of a suitable Lyapunov-Krasovskii functional, which gives meaningful results for the problem under consideration. The derived results extend and improve some result of in the relevant literature, which are related to the qualitative properties of solutions of a SDDE of second order. The results of this paper are new and have novelty, and they do a contribution to the topic and relevant literature. As an application, an example is given to show the effectiveness and applicability of the obtained results. Finally, by the results of this paper, we extend and improve some recent results that can be found in the relevant literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic delay differential equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">second order</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastically stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastically asymptotically stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lyapunov-krasovskii functional</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cemil Tunç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Taibah University for Science</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">13(2019), 1, Seite 875-882</subfield><subfield code="w">(DE-627)835589021</subfield><subfield code="w">(DE-600)2834710-9</subfield><subfield code="x">16583655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:875-882</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/16583655.2019.1652453</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a13d903cda604621911d89a198377e98</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/16583655.2019.1652453</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1658-3655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">875-882</subfield></datafield></record></collection>
|
score |
7.401696 |