Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry
The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a mor...
Ausführliche Beschreibung
Autor*in: |
Zhewei Hu [verfasserIn] Shu Jin [verfasserIn] Rongrong Ying [verfasserIn] Xiaohui Yang [verfasserIn] Baoping Sun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Water - MDPI AG, 2010, 13(2021), 8, p 1014 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:8, p 1014 |
Links: |
---|
DOI / URN: |
10.3390/w13081014 |
---|
Katalog-ID: |
DOAJ013695754 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ013695754 | ||
003 | DE-627 | ||
005 | 20240412184718.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/w13081014 |2 doi | |
035 | |a (DE-627)DOAJ013695754 | ||
035 | |a (DE-599)DOAJ1435a1cc041b4303aa862b4202fc8651 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TC1-978 | |
050 | 0 | |a TD201-500 | |
100 | 0 | |a Zhewei Hu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks. | ||
650 | 4 | |a metals | |
650 | 4 | |a eucalyptus leaf | |
650 | 4 | |a chlorophyll a | |
650 | 4 | |a blue-green algae | |
653 | 0 | |a Hydraulic engineering | |
653 | 0 | |a Water supply for domestic and industrial purposes | |
700 | 0 | |a Shu Jin |e verfasserin |4 aut | |
700 | 0 | |a Rongrong Ying |e verfasserin |4 aut | |
700 | 0 | |a Xiaohui Yang |e verfasserin |4 aut | |
700 | 0 | |a Baoping Sun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Water |d MDPI AG, 2010 |g 13(2021), 8, p 1014 |w (DE-627)611729008 |w (DE-600)2521238-2 |x 20734441 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:8, p 1014 |
856 | 4 | 0 | |u https://doi.org/10.3390/w13081014 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1435a1cc041b4303aa862b4202fc8651 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4441/13/8/1014 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4441 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 8, p 1014 |
author_variant |
z h zh s j sj r y ry x y xy b s bs |
---|---|
matchkey_str |
article:20734441:2021----::uaytsefouinoelcmtliteeoaocaoatranatwt |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TC |
publishDate |
2021 |
allfields |
10.3390/w13081014 doi (DE-627)DOAJ013695754 (DE-599)DOAJ1435a1cc041b4303aa862b4202fc8651 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Zhewei Hu verfasserin aut Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks. metals eucalyptus leaf chlorophyll a blue-green algae Hydraulic engineering Water supply for domestic and industrial purposes Shu Jin verfasserin aut Rongrong Ying verfasserin aut Xiaohui Yang verfasserin aut Baoping Sun verfasserin aut In Water MDPI AG, 2010 13(2021), 8, p 1014 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:13 year:2021 number:8, p 1014 https://doi.org/10.3390/w13081014 kostenfrei https://doaj.org/article/1435a1cc041b4303aa862b4202fc8651 kostenfrei https://www.mdpi.com/2073-4441/13/8/1014 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 8, p 1014 |
spelling |
10.3390/w13081014 doi (DE-627)DOAJ013695754 (DE-599)DOAJ1435a1cc041b4303aa862b4202fc8651 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Zhewei Hu verfasserin aut Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks. metals eucalyptus leaf chlorophyll a blue-green algae Hydraulic engineering Water supply for domestic and industrial purposes Shu Jin verfasserin aut Rongrong Ying verfasserin aut Xiaohui Yang verfasserin aut Baoping Sun verfasserin aut In Water MDPI AG, 2010 13(2021), 8, p 1014 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:13 year:2021 number:8, p 1014 https://doi.org/10.3390/w13081014 kostenfrei https://doaj.org/article/1435a1cc041b4303aa862b4202fc8651 kostenfrei https://www.mdpi.com/2073-4441/13/8/1014 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 8, p 1014 |
allfields_unstemmed |
10.3390/w13081014 doi (DE-627)DOAJ013695754 (DE-599)DOAJ1435a1cc041b4303aa862b4202fc8651 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Zhewei Hu verfasserin aut Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks. metals eucalyptus leaf chlorophyll a blue-green algae Hydraulic engineering Water supply for domestic and industrial purposes Shu Jin verfasserin aut Rongrong Ying verfasserin aut Xiaohui Yang verfasserin aut Baoping Sun verfasserin aut In Water MDPI AG, 2010 13(2021), 8, p 1014 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:13 year:2021 number:8, p 1014 https://doi.org/10.3390/w13081014 kostenfrei https://doaj.org/article/1435a1cc041b4303aa862b4202fc8651 kostenfrei https://www.mdpi.com/2073-4441/13/8/1014 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 8, p 1014 |
allfieldsGer |
10.3390/w13081014 doi (DE-627)DOAJ013695754 (DE-599)DOAJ1435a1cc041b4303aa862b4202fc8651 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Zhewei Hu verfasserin aut Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks. metals eucalyptus leaf chlorophyll a blue-green algae Hydraulic engineering Water supply for domestic and industrial purposes Shu Jin verfasserin aut Rongrong Ying verfasserin aut Xiaohui Yang verfasserin aut Baoping Sun verfasserin aut In Water MDPI AG, 2010 13(2021), 8, p 1014 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:13 year:2021 number:8, p 1014 https://doi.org/10.3390/w13081014 kostenfrei https://doaj.org/article/1435a1cc041b4303aa862b4202fc8651 kostenfrei https://www.mdpi.com/2073-4441/13/8/1014 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 8, p 1014 |
allfieldsSound |
10.3390/w13081014 doi (DE-627)DOAJ013695754 (DE-599)DOAJ1435a1cc041b4303aa862b4202fc8651 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Zhewei Hu verfasserin aut Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks. metals eucalyptus leaf chlorophyll a blue-green algae Hydraulic engineering Water supply for domestic and industrial purposes Shu Jin verfasserin aut Rongrong Ying verfasserin aut Xiaohui Yang verfasserin aut Baoping Sun verfasserin aut In Water MDPI AG, 2010 13(2021), 8, p 1014 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:13 year:2021 number:8, p 1014 https://doi.org/10.3390/w13081014 kostenfrei https://doaj.org/article/1435a1cc041b4303aa862b4202fc8651 kostenfrei https://www.mdpi.com/2073-4441/13/8/1014 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 8, p 1014 |
language |
English |
source |
In Water 13(2021), 8, p 1014 volume:13 year:2021 number:8, p 1014 |
sourceStr |
In Water 13(2021), 8, p 1014 volume:13 year:2021 number:8, p 1014 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
metals eucalyptus leaf chlorophyll a blue-green algae Hydraulic engineering Water supply for domestic and industrial purposes |
isfreeaccess_bool |
true |
container_title |
Water |
authorswithroles_txt_mv |
Zhewei Hu @@aut@@ Shu Jin @@aut@@ Rongrong Ying @@aut@@ Xiaohui Yang @@aut@@ Baoping Sun @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
611729008 |
id |
DOAJ013695754 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013695754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412184718.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w13081014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013695754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1435a1cc041b4303aa862b4202fc8651</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhewei Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eucalyptus leaf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chlorophyll a</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blue-green algae</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shu Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongrong Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohui Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baoping Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 8, p 1014</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8, p 1014</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w13081014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1435a1cc041b4303aa862b4202fc8651</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/13/8/1014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">8, p 1014</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zhewei Hu |
spellingShingle |
Zhewei Hu misc TC1-978 misc TD201-500 misc metals misc eucalyptus leaf misc chlorophyll a misc blue-green algae misc Hydraulic engineering misc Water supply for domestic and industrial purposes Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry |
authorStr |
Zhewei Hu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)611729008 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TC1-978 |
illustrated |
Not Illustrated |
issn |
20734441 |
topic_title |
TC1-978 TD201-500 Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry metals eucalyptus leaf chlorophyll a blue-green algae |
topic |
misc TC1-978 misc TD201-500 misc metals misc eucalyptus leaf misc chlorophyll a misc blue-green algae misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_unstemmed |
misc TC1-978 misc TD201-500 misc metals misc eucalyptus leaf misc chlorophyll a misc blue-green algae misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_browse |
misc TC1-978 misc TD201-500 misc metals misc eucalyptus leaf misc chlorophyll a misc blue-green algae misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water |
hierarchy_parent_id |
611729008 |
hierarchy_top_title |
Water |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)611729008 (DE-600)2521238-2 |
title |
Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry |
ctrlnum |
(DE-627)DOAJ013695754 (DE-599)DOAJ1435a1cc041b4303aa862b4202fc8651 |
title_full |
Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry |
author_sort |
Zhewei Hu |
journal |
Water |
journalStr |
Water |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Zhewei Hu Shu Jin Rongrong Ying Xiaohui Yang Baoping Sun |
container_volume |
13 |
class |
TC1-978 TD201-500 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhewei Hu |
doi_str_mv |
10.3390/w13081014 |
author2-role |
verfasserin |
title_sort |
eucalyptus leaf solution to replace metals in the removal of cyanobacteria in wastewater from the paper mill industry |
callnumber |
TC1-978 |
title_auth |
Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry |
abstract |
The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks. |
abstractGer |
The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks. |
abstract_unstemmed |
The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 1014 |
title_short |
Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry |
url |
https://doi.org/10.3390/w13081014 https://doaj.org/article/1435a1cc041b4303aa862b4202fc8651 https://www.mdpi.com/2073-4441/13/8/1014 https://doaj.org/toc/2073-4441 |
remote_bool |
true |
author2 |
Shu Jin Rongrong Ying Xiaohui Yang Baoping Sun |
author2Str |
Shu Jin Rongrong Ying Xiaohui Yang Baoping Sun |
ppnlink |
611729008 |
callnumber-subject |
TC - Hydraulic and Ocean Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/w13081014 |
callnumber-a |
TC1-978 |
up_date |
2024-07-03T19:03:55.759Z |
_version_ |
1803585779939672064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013695754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412184718.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w13081014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013695754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1435a1cc041b4303aa862b4202fc8651</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhewei Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Eucalyptus Leaf Solution to Replace Metals in the Removal of Cyanobacteria in Wastewater from the Paper Mill Industry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The frequent occurrence of cyanobacterial blooms, caused by the eutrophication of water bodies, has triggered several ecological issues. Metal-controlled cyanobacteria are resulting in a series of secondary environmental problems and thus limiting environmental sustainability. Whether there is a more environmentally friendly way to replace metals in the removal of cyanobacteria is still unclear. To explore whether common heavy metals inhibit algal growth and whether <i<Eucalyptus</i< leaves (EL) can replace heavy metal ions in controlling algae outbreaks, here, we add Fe<sup<3+</sup<, Al<sup<3+</sup<, 3 mol/L of zinc (Zn<sub<3</sub<), 10 mol/L zinc (Zn<sub<10</sub<), and EL to a medium containing <i<Cyanobacteria</i<. We determine the medium’s color (456 nm), UV (254 nm), chlorophyll a, turbidity, temperature, pH, total dissolved solids, conductivity, and blue-green algae (BGA) at days 1, 4, 7, 11, 14, 19, and 21. We find that Fe<sup<3+</sup<, Al<sup<3+</sup<, Zn<sub<3</sub<, Zn<sub<10</sub<, and EL can inhibit chlorophyll synthesis, thereby impeding algae biomass growth due to metal ions’ disruption of the chlorophyll structure. The toxicity of Zn<sup<2+</sup< may be higher than that of Fe<sup<3+</sup< and Al<sup<3+</sup< since it can completely destroy the structure of chlorophyll a. The damage of Zn (10) to chlorophyll a is stronger than that of Zn (3), indicating that high concentrations of metals have a stronger inhibitory effect on algae. The toxicity of EL to algae is lower than that of other metals, but it can significantly inhibit the growth of algae. We suggest the use of <i<Eucalyptus</i< leaves to inhibit algal growth in eutrophic water bodies. Our results provide a scientific basis for an environmentally friendly approach to controlling cyanobacteria outbreaks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eucalyptus leaf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chlorophyll a</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blue-green algae</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shu Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongrong Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohui Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baoping Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 8, p 1014</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8, p 1014</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w13081014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1435a1cc041b4303aa862b4202fc8651</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/13/8/1014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">8, p 1014</subfield></datafield></record></collection>
|
score |
7.4005966 |