Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models
One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators developmen...
Ausführliche Beschreibung
Autor*in: |
Fathiyya Ulfa [verfasserIn] Thomas G. Orton [verfasserIn] Yash P. Dang [verfasserIn] Neal W. Menzies [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agronomy - MDPI AG, 2012, 12(2022), 2, p 384 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:2, p 384 |
Links: |
---|
DOI / URN: |
10.3390/agronomy12020384 |
---|
Katalog-ID: |
DOAJ013809393 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ013809393 | ||
003 | DE-627 | ||
005 | 20240414192514.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agronomy12020384 |2 doi | |
035 | |a (DE-627)DOAJ013809393 | ||
035 | |a (DE-599)DOAJ748b3e573f3141c592d02ea876ee7871 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Fathiyya Ulfa |e verfasserin |4 aut | |
245 | 1 | 0 | |a Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions. | ||
650 | 4 | |a wheat yield prediction | |
650 | 4 | |a within-field variation | |
650 | 4 | |a vegetation index | |
650 | 4 | |a long-term average yields | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Thomas G. Orton |e verfasserin |4 aut | |
700 | 0 | |a Yash P. Dang |e verfasserin |4 aut | |
700 | 0 | |a Neal W. Menzies |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agronomy |d MDPI AG, 2012 |g 12(2022), 2, p 384 |w (DE-627)658000543 |w (DE-600)2607043-1 |x 20734395 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:2, p 384 |
856 | 4 | 0 | |u https://doi.org/10.3390/agronomy12020384 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/748b3e573f3141c592d02ea876ee7871 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4395/12/2/384 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4395 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 2, p 384 |
author_variant |
f u fu t g o tgo y p d ypd n w m nwm |
---|---|
matchkey_str |
article:20734395:2022----::eeoigntsigeoeesnidcsoersnwtifedaitoowetilssesetf |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/agronomy12020384 doi (DE-627)DOAJ013809393 (DE-599)DOAJ748b3e573f3141c592d02ea876ee7871 DE-627 ger DE-627 rakwb eng Fathiyya Ulfa verfasserin aut Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions. wheat yield prediction within-field variation vegetation index long-term average yields Agriculture S Thomas G. Orton verfasserin aut Yash P. Dang verfasserin aut Neal W. Menzies verfasserin aut In Agronomy MDPI AG, 2012 12(2022), 2, p 384 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:12 year:2022 number:2, p 384 https://doi.org/10.3390/agronomy12020384 kostenfrei https://doaj.org/article/748b3e573f3141c592d02ea876ee7871 kostenfrei https://www.mdpi.com/2073-4395/12/2/384 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 2, p 384 |
spelling |
10.3390/agronomy12020384 doi (DE-627)DOAJ013809393 (DE-599)DOAJ748b3e573f3141c592d02ea876ee7871 DE-627 ger DE-627 rakwb eng Fathiyya Ulfa verfasserin aut Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions. wheat yield prediction within-field variation vegetation index long-term average yields Agriculture S Thomas G. Orton verfasserin aut Yash P. Dang verfasserin aut Neal W. Menzies verfasserin aut In Agronomy MDPI AG, 2012 12(2022), 2, p 384 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:12 year:2022 number:2, p 384 https://doi.org/10.3390/agronomy12020384 kostenfrei https://doaj.org/article/748b3e573f3141c592d02ea876ee7871 kostenfrei https://www.mdpi.com/2073-4395/12/2/384 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 2, p 384 |
allfields_unstemmed |
10.3390/agronomy12020384 doi (DE-627)DOAJ013809393 (DE-599)DOAJ748b3e573f3141c592d02ea876ee7871 DE-627 ger DE-627 rakwb eng Fathiyya Ulfa verfasserin aut Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions. wheat yield prediction within-field variation vegetation index long-term average yields Agriculture S Thomas G. Orton verfasserin aut Yash P. Dang verfasserin aut Neal W. Menzies verfasserin aut In Agronomy MDPI AG, 2012 12(2022), 2, p 384 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:12 year:2022 number:2, p 384 https://doi.org/10.3390/agronomy12020384 kostenfrei https://doaj.org/article/748b3e573f3141c592d02ea876ee7871 kostenfrei https://www.mdpi.com/2073-4395/12/2/384 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 2, p 384 |
allfieldsGer |
10.3390/agronomy12020384 doi (DE-627)DOAJ013809393 (DE-599)DOAJ748b3e573f3141c592d02ea876ee7871 DE-627 ger DE-627 rakwb eng Fathiyya Ulfa verfasserin aut Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions. wheat yield prediction within-field variation vegetation index long-term average yields Agriculture S Thomas G. Orton verfasserin aut Yash P. Dang verfasserin aut Neal W. Menzies verfasserin aut In Agronomy MDPI AG, 2012 12(2022), 2, p 384 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:12 year:2022 number:2, p 384 https://doi.org/10.3390/agronomy12020384 kostenfrei https://doaj.org/article/748b3e573f3141c592d02ea876ee7871 kostenfrei https://www.mdpi.com/2073-4395/12/2/384 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 2, p 384 |
allfieldsSound |
10.3390/agronomy12020384 doi (DE-627)DOAJ013809393 (DE-599)DOAJ748b3e573f3141c592d02ea876ee7871 DE-627 ger DE-627 rakwb eng Fathiyya Ulfa verfasserin aut Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions. wheat yield prediction within-field variation vegetation index long-term average yields Agriculture S Thomas G. Orton verfasserin aut Yash P. Dang verfasserin aut Neal W. Menzies verfasserin aut In Agronomy MDPI AG, 2012 12(2022), 2, p 384 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:12 year:2022 number:2, p 384 https://doi.org/10.3390/agronomy12020384 kostenfrei https://doaj.org/article/748b3e573f3141c592d02ea876ee7871 kostenfrei https://www.mdpi.com/2073-4395/12/2/384 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 2, p 384 |
language |
English |
source |
In Agronomy 12(2022), 2, p 384 volume:12 year:2022 number:2, p 384 |
sourceStr |
In Agronomy 12(2022), 2, p 384 volume:12 year:2022 number:2, p 384 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wheat yield prediction within-field variation vegetation index long-term average yields Agriculture S |
isfreeaccess_bool |
true |
container_title |
Agronomy |
authorswithroles_txt_mv |
Fathiyya Ulfa @@aut@@ Thomas G. Orton @@aut@@ Yash P. Dang @@aut@@ Neal W. Menzies @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
658000543 |
id |
DOAJ013809393 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013809393</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414192514.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy12020384</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013809393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ748b3e573f3141c592d02ea876ee7871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fathiyya Ulfa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheat yield prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">within-field variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-term average yields</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas G. Orton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yash P. Dang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Neal W. Menzies</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 2, p 384</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2, p 384</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy12020384</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/748b3e573f3141c592d02ea876ee7871</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/12/2/384</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">2, p 384</subfield></datafield></record></collection>
|
author |
Fathiyya Ulfa |
spellingShingle |
Fathiyya Ulfa misc wheat yield prediction misc within-field variation misc vegetation index misc long-term average yields misc Agriculture misc S Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models |
authorStr |
Fathiyya Ulfa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)658000543 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20734395 |
topic_title |
Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models wheat yield prediction within-field variation vegetation index long-term average yields |
topic |
misc wheat yield prediction misc within-field variation misc vegetation index misc long-term average yields misc Agriculture misc S |
topic_unstemmed |
misc wheat yield prediction misc within-field variation misc vegetation index misc long-term average yields misc Agriculture misc S |
topic_browse |
misc wheat yield prediction misc within-field variation misc vegetation index misc long-term average yields misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agronomy |
hierarchy_parent_id |
658000543 |
hierarchy_top_title |
Agronomy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)658000543 (DE-600)2607043-1 |
title |
Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models |
ctrlnum |
(DE-627)DOAJ013809393 (DE-599)DOAJ748b3e573f3141c592d02ea876ee7871 |
title_full |
Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models |
author_sort |
Fathiyya Ulfa |
journal |
Agronomy |
journalStr |
Agronomy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Fathiyya Ulfa Thomas G. Orton Yash P. Dang Neal W. Menzies |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Fathiyya Ulfa |
doi_str_mv |
10.3390/agronomy12020384 |
author2-role |
verfasserin |
title_sort |
developing and testing remote-sensing indices to represent within-field variation of wheat yields: assessment of the variation explained by simple models |
title_auth |
Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models |
abstract |
One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions. |
abstractGer |
One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions. |
abstract_unstemmed |
One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 384 |
title_short |
Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models |
url |
https://doi.org/10.3390/agronomy12020384 https://doaj.org/article/748b3e573f3141c592d02ea876ee7871 https://www.mdpi.com/2073-4395/12/2/384 https://doaj.org/toc/2073-4395 |
remote_bool |
true |
author2 |
Thomas G. Orton Yash P. Dang Neal W. Menzies |
author2Str |
Thomas G. Orton Yash P. Dang Neal W. Menzies |
ppnlink |
658000543 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agronomy12020384 |
up_date |
2024-07-03T19:42:04.526Z |
_version_ |
1803588179885817857 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013809393</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414192514.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy12020384</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013809393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ748b3e573f3141c592d02ea876ee7871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fathiyya Ulfa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators development to map productivity. However, the most appropriate vegetation index and crop growth stage for use in yield mapping is often unclear. This study considered vegetation indices and growth stages selection and built and tested models to predict within-field yield variation. We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were tested using leave-one-field-out cross-validation. It was found that some of the simplest models were not improved upon (by more complex models) for the prediction of the spatial pattern of the high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term average yields were generally more accurate than predictions of yield for single years. Therefore, the predictions over multiple years are valuable for revealing consistent spatial patterns in yield. The results demonstrate the potential and limitations of tools based on remote-sensing data that might provide growers with better knowledge of within-field variation to make more informed management decisions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheat yield prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">within-field variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-term average yields</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas G. Orton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yash P. Dang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Neal W. Menzies</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 2, p 384</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2, p 384</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy12020384</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/748b3e573f3141c592d02ea876ee7871</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/12/2/384</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">2, p 384</subfield></datafield></record></collection>
|
score |
7.400936 |