Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models

One important issue faced by wheat producers is temporal and spatial yield variation management at a within-field scale. Vegetation indices derived from remote-sensing platforms, such as Landsat, can provide vital information characterising this variability and allow crop yield indicators developmen...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Fathiyya Ulfa [verfasserIn]

Thomas G. Orton [verfasserIn]

Yash P. Dang [verfasserIn]

Neal W. Menzies [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

wheat yield prediction

within-field variation

vegetation index

long-term average yields

Übergeordnetes Werk:

In: Agronomy - MDPI AG, 2012, 12(2022), 2, p 384

Übergeordnetes Werk:

volume:12 ; year:2022 ; number:2, p 384

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.3390/agronomy12020384

Katalog-ID:

DOAJ013809393

Nicht das Richtige dabei?

Schreiben Sie uns!