Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine
In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is...
Ausführliche Beschreibung
Autor*in: |
Beidong Zhang [verfasserIn] Yankun Jiang [verfasserIn] Yexin Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Marine Science and Engineering - MDPI AG, 2014, 10(2022), 2, p 239 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:2, p 239 |
Links: |
---|
DOI / URN: |
10.3390/jmse10020239 |
---|
Katalog-ID: |
DOAJ013882627 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ013882627 | ||
003 | DE-627 | ||
005 | 20240414184743.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jmse10020239 |2 doi | |
035 | |a (DE-627)DOAJ013882627 | ||
035 | |a (DE-599)DOAJ17c695dec47c4326a3728c37ae12a756 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a VM1-989 | |
050 | 0 | |a GC1-1581 | |
100 | 0 | |a Beidong Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode. | ||
650 | 4 | |a calibration | |
650 | 4 | |a LNG–diesel dual fuel | |
650 | 4 | |a substitution ratio | |
650 | 4 | |a particulate matter emission | |
653 | 0 | |a Naval architecture. Shipbuilding. Marine engineering | |
653 | 0 | |a Oceanography | |
700 | 0 | |a Yankun Jiang |e verfasserin |4 aut | |
700 | 0 | |a Yexin Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Marine Science and Engineering |d MDPI AG, 2014 |g 10(2022), 2, p 239 |w (DE-627)771274181 |w (DE-600)2738390-8 |x 20771312 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:2, p 239 |
856 | 4 | 0 | |u https://doi.org/10.3390/jmse10020239 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/17c695dec47c4326a3728c37ae12a756 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-1312/10/2/239 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-1312 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 2, p 239 |
author_variant |
b z bz y j yj y c yc |
---|---|
matchkey_str |
article:20771312:2022----::eerhnairtoeooynpeisosfmrnlg |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
VM |
publishDate |
2022 |
allfields |
10.3390/jmse10020239 doi (DE-627)DOAJ013882627 (DE-599)DOAJ17c695dec47c4326a3728c37ae12a756 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Beidong Zhang verfasserin aut Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode. calibration LNG–diesel dual fuel substitution ratio particulate matter emission Naval architecture. Shipbuilding. Marine engineering Oceanography Yankun Jiang verfasserin aut Yexin Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 2, p 239 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:2, p 239 https://doi.org/10.3390/jmse10020239 kostenfrei https://doaj.org/article/17c695dec47c4326a3728c37ae12a756 kostenfrei https://www.mdpi.com/2077-1312/10/2/239 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2, p 239 |
spelling |
10.3390/jmse10020239 doi (DE-627)DOAJ013882627 (DE-599)DOAJ17c695dec47c4326a3728c37ae12a756 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Beidong Zhang verfasserin aut Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode. calibration LNG–diesel dual fuel substitution ratio particulate matter emission Naval architecture. Shipbuilding. Marine engineering Oceanography Yankun Jiang verfasserin aut Yexin Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 2, p 239 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:2, p 239 https://doi.org/10.3390/jmse10020239 kostenfrei https://doaj.org/article/17c695dec47c4326a3728c37ae12a756 kostenfrei https://www.mdpi.com/2077-1312/10/2/239 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2, p 239 |
allfields_unstemmed |
10.3390/jmse10020239 doi (DE-627)DOAJ013882627 (DE-599)DOAJ17c695dec47c4326a3728c37ae12a756 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Beidong Zhang verfasserin aut Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode. calibration LNG–diesel dual fuel substitution ratio particulate matter emission Naval architecture. Shipbuilding. Marine engineering Oceanography Yankun Jiang verfasserin aut Yexin Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 2, p 239 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:2, p 239 https://doi.org/10.3390/jmse10020239 kostenfrei https://doaj.org/article/17c695dec47c4326a3728c37ae12a756 kostenfrei https://www.mdpi.com/2077-1312/10/2/239 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2, p 239 |
allfieldsGer |
10.3390/jmse10020239 doi (DE-627)DOAJ013882627 (DE-599)DOAJ17c695dec47c4326a3728c37ae12a756 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Beidong Zhang verfasserin aut Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode. calibration LNG–diesel dual fuel substitution ratio particulate matter emission Naval architecture. Shipbuilding. Marine engineering Oceanography Yankun Jiang verfasserin aut Yexin Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 2, p 239 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:2, p 239 https://doi.org/10.3390/jmse10020239 kostenfrei https://doaj.org/article/17c695dec47c4326a3728c37ae12a756 kostenfrei https://www.mdpi.com/2077-1312/10/2/239 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2, p 239 |
allfieldsSound |
10.3390/jmse10020239 doi (DE-627)DOAJ013882627 (DE-599)DOAJ17c695dec47c4326a3728c37ae12a756 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Beidong Zhang verfasserin aut Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode. calibration LNG–diesel dual fuel substitution ratio particulate matter emission Naval architecture. Shipbuilding. Marine engineering Oceanography Yankun Jiang verfasserin aut Yexin Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 2, p 239 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:2, p 239 https://doi.org/10.3390/jmse10020239 kostenfrei https://doaj.org/article/17c695dec47c4326a3728c37ae12a756 kostenfrei https://www.mdpi.com/2077-1312/10/2/239 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2, p 239 |
language |
English |
source |
In Journal of Marine Science and Engineering 10(2022), 2, p 239 volume:10 year:2022 number:2, p 239 |
sourceStr |
In Journal of Marine Science and Engineering 10(2022), 2, p 239 volume:10 year:2022 number:2, p 239 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
calibration LNG–diesel dual fuel substitution ratio particulate matter emission Naval architecture. Shipbuilding. Marine engineering Oceanography |
isfreeaccess_bool |
true |
container_title |
Journal of Marine Science and Engineering |
authorswithroles_txt_mv |
Beidong Zhang @@aut@@ Yankun Jiang @@aut@@ Yexin Chen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
771274181 |
id |
DOAJ013882627 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013882627</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414184743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse10020239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013882627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ17c695dec47c4326a3728c37ae12a756</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Beidong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LNG–diesel dual fuel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">substitution ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particulate matter emission</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yankun Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yexin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2022), 2, p 239</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2, p 239</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse10020239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/17c695dec47c4326a3728c37ae12a756</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/10/2/239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">2, p 239</subfield></datafield></record></collection>
|
callnumber-first |
V - Naval Science |
author |
Beidong Zhang |
spellingShingle |
Beidong Zhang misc VM1-989 misc GC1-1581 misc calibration misc LNG–diesel dual fuel misc substitution ratio misc particulate matter emission misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine |
authorStr |
Beidong Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771274181 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
VM1-989 |
illustrated |
Not Illustrated |
issn |
20771312 |
topic_title |
VM1-989 GC1-1581 Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine calibration LNG–diesel dual fuel substitution ratio particulate matter emission |
topic |
misc VM1-989 misc GC1-1581 misc calibration misc LNG–diesel dual fuel misc substitution ratio misc particulate matter emission misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_unstemmed |
misc VM1-989 misc GC1-1581 misc calibration misc LNG–diesel dual fuel misc substitution ratio misc particulate matter emission misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_browse |
misc VM1-989 misc GC1-1581 misc calibration misc LNG–diesel dual fuel misc substitution ratio misc particulate matter emission misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Marine Science and Engineering |
hierarchy_parent_id |
771274181 |
hierarchy_top_title |
Journal of Marine Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771274181 (DE-600)2738390-8 |
title |
Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine |
ctrlnum |
(DE-627)DOAJ013882627 (DE-599)DOAJ17c695dec47c4326a3728c37ae12a756 |
title_full |
Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine |
author_sort |
Beidong Zhang |
journal |
Journal of Marine Science and Engineering |
journalStr |
Journal of Marine Science and Engineering |
callnumber-first-code |
V |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Beidong Zhang Yankun Jiang Yexin Chen |
container_volume |
10 |
class |
VM1-989 GC1-1581 |
format_se |
Elektronische Aufsätze |
author-letter |
Beidong Zhang |
doi_str_mv |
10.3390/jmse10020239 |
author2-role |
verfasserin |
title_sort |
research on calibration, economy and pm emissions of a marine lng–diesel dual-fuel engine |
callnumber |
VM1-989 |
title_auth |
Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine |
abstract |
In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode. |
abstractGer |
In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode. |
abstract_unstemmed |
In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 239 |
title_short |
Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine |
url |
https://doi.org/10.3390/jmse10020239 https://doaj.org/article/17c695dec47c4326a3728c37ae12a756 https://www.mdpi.com/2077-1312/10/2/239 https://doaj.org/toc/2077-1312 |
remote_bool |
true |
author2 |
Yankun Jiang Yexin Chen |
author2Str |
Yankun Jiang Yexin Chen |
ppnlink |
771274181 |
callnumber-subject |
VM - Naval Architecture, Shipbuilding, Marine Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jmse10020239 |
callnumber-a |
VM1-989 |
up_date |
2024-07-03T20:04:53.129Z |
_version_ |
1803589614967980032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013882627</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414184743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse10020239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013882627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ17c695dec47c4326a3728c37ae12a756</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Beidong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual-Fuel Engine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to convert the marine diesel engine into an LNG (Liquefied Natural Gas)–diesel dual-fuel engine and ensure its power and emission characteristics, a new calibration method is proposed, and the fuel substitution ratio, economy and detailed particulate matter emission law after the engine is calibrated using this method are studied. The calibration method takes the peak pressure in the cylinder and the exhaust temperature as constraints and uses the diesel mass substitution ratio as the objective function. Based on the proposed calibration method, the engine is calibrated by setting up a calibration test bench. The test obtains the distribution characteristics of the diesel mass substitution ratio under various operating conditions of the engine. The results show that the proposed calibration method allows the dual-fuel engine to achieve the same power performance as the original engine. At the same time, the diesel mass substitution ratio of the calibrated dual-fuel engine can reach up to 95% (800 r/min 800 Nm, 900 r/min @ 800 Nm and 1000 r/min @ 800 Nm). The substitution ratio in the range of 900 r/min~1200 r/min at a common speed is more than 70%, and the average diesel mass substitution ratio under all working conditions is 71%. Furthermore, the study of engine economy shows that the BSFC (brake specific fuel consumption) of the dual-fuel mode is higher than that of the pure diesel mode when working under external characteristics, propulsion characteristics and different loads at 1000 r/min speed. This is more obvious when the load is small, and the two are closer when the load is medium or high; however, the fuel cost when the engine works in dual-fuel mode is much lower than that of the pure diesel mode. In the usual speed and load range, the particulate matter emission test shows that its particle size distribution, total number of particles and particle volume are significantly reduced in the dual-fuel mode.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LNG–diesel dual fuel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">substitution ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particulate matter emission</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yankun Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yexin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2022), 2, p 239</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2, p 239</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse10020239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/17c695dec47c4326a3728c37ae12a756</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/10/2/239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">2, p 239</subfield></datafield></record></collection>
|
score |
7.4013042 |