Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios
The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonom...
Ausführliche Beschreibung
Autor*in: |
Qiao Huang [verfasserIn] Jinlong Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: International Journal of Advanced Robotic Systems - SAGE Publishing, 2008, 18(2021) |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2021 |
Links: |
---|
DOI / URN: |
10.1177/17298814211008752 |
---|
Katalog-ID: |
DOAJ013918125 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ013918125 | ||
003 | DE-627 | ||
005 | 20230310061933.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1177/17298814211008752 |2 doi | |
035 | |a (DE-627)DOAJ013918125 | ||
035 | |a (DE-599)DOAJ8c1ddba27b674eb09e41091783c5e01c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Qiao Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added. | ||
653 | 0 | |a Electronics | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Jinlong Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Advanced Robotic Systems |d SAGE Publishing, 2008 |g 18(2021) |w (DE-627)500017794 |w (DE-600)2202393-8 |x 17298814 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1177/17298814211008752 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8c1ddba27b674eb09e41091783c5e01c |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1177/17298814211008752 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1729-8814 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2706 | ||
912 | |a GBV_ILN_2707 | ||
912 | |a GBV_ILN_2890 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2021 |
author_variant |
q h qh j l jl |
---|---|
matchkey_str |
article:17298814:2021----::rcialmttosfaeeetoagrtmaeohuhrnf |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1177/17298814211008752 doi (DE-627)DOAJ013918125 (DE-599)DOAJ8c1ddba27b674eb09e41091783c5e01c DE-627 ger DE-627 rakwb eng TK7800-8360 QA75.5-76.95 Qiao Huang verfasserin aut Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added. Electronics Electronic computers. Computer science Jinlong Liu verfasserin aut In International Journal of Advanced Robotic Systems SAGE Publishing, 2008 18(2021) (DE-627)500017794 (DE-600)2202393-8 17298814 nnns volume:18 year:2021 https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/article/8c1ddba27b674eb09e41091783c5e01c kostenfrei https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/toc/1729-8814 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 |
spelling |
10.1177/17298814211008752 doi (DE-627)DOAJ013918125 (DE-599)DOAJ8c1ddba27b674eb09e41091783c5e01c DE-627 ger DE-627 rakwb eng TK7800-8360 QA75.5-76.95 Qiao Huang verfasserin aut Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added. Electronics Electronic computers. Computer science Jinlong Liu verfasserin aut In International Journal of Advanced Robotic Systems SAGE Publishing, 2008 18(2021) (DE-627)500017794 (DE-600)2202393-8 17298814 nnns volume:18 year:2021 https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/article/8c1ddba27b674eb09e41091783c5e01c kostenfrei https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/toc/1729-8814 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 |
allfields_unstemmed |
10.1177/17298814211008752 doi (DE-627)DOAJ013918125 (DE-599)DOAJ8c1ddba27b674eb09e41091783c5e01c DE-627 ger DE-627 rakwb eng TK7800-8360 QA75.5-76.95 Qiao Huang verfasserin aut Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added. Electronics Electronic computers. Computer science Jinlong Liu verfasserin aut In International Journal of Advanced Robotic Systems SAGE Publishing, 2008 18(2021) (DE-627)500017794 (DE-600)2202393-8 17298814 nnns volume:18 year:2021 https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/article/8c1ddba27b674eb09e41091783c5e01c kostenfrei https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/toc/1729-8814 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 |
allfieldsGer |
10.1177/17298814211008752 doi (DE-627)DOAJ013918125 (DE-599)DOAJ8c1ddba27b674eb09e41091783c5e01c DE-627 ger DE-627 rakwb eng TK7800-8360 QA75.5-76.95 Qiao Huang verfasserin aut Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added. Electronics Electronic computers. Computer science Jinlong Liu verfasserin aut In International Journal of Advanced Robotic Systems SAGE Publishing, 2008 18(2021) (DE-627)500017794 (DE-600)2202393-8 17298814 nnns volume:18 year:2021 https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/article/8c1ddba27b674eb09e41091783c5e01c kostenfrei https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/toc/1729-8814 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 |
allfieldsSound |
10.1177/17298814211008752 doi (DE-627)DOAJ013918125 (DE-599)DOAJ8c1ddba27b674eb09e41091783c5e01c DE-627 ger DE-627 rakwb eng TK7800-8360 QA75.5-76.95 Qiao Huang verfasserin aut Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added. Electronics Electronic computers. Computer science Jinlong Liu verfasserin aut In International Journal of Advanced Robotic Systems SAGE Publishing, 2008 18(2021) (DE-627)500017794 (DE-600)2202393-8 17298814 nnns volume:18 year:2021 https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/article/8c1ddba27b674eb09e41091783c5e01c kostenfrei https://doi.org/10.1177/17298814211008752 kostenfrei https://doaj.org/toc/1729-8814 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 |
language |
English |
source |
In International Journal of Advanced Robotic Systems 18(2021) volume:18 year:2021 |
sourceStr |
In International Journal of Advanced Robotic Systems 18(2021) volume:18 year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Electronics Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
International Journal of Advanced Robotic Systems |
authorswithroles_txt_mv |
Qiao Huang @@aut@@ Jinlong Liu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
500017794 |
id |
DOAJ013918125 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013918125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310061933.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1177/17298814211008752</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013918125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8c1ddba27b674eb09e41091783c5e01c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiao Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Advanced Robotic Systems</subfield><subfield code="d">SAGE Publishing, 2008</subfield><subfield code="g">18(2021)</subfield><subfield code="w">(DE-627)500017794</subfield><subfield code="w">(DE-600)2202393-8</subfield><subfield code="x">17298814</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/17298814211008752</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8c1ddba27b674eb09e41091783c5e01c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/17298814211008752</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1729-8814</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2706</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2707</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2890</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Qiao Huang |
spellingShingle |
Qiao Huang misc TK7800-8360 misc QA75.5-76.95 misc Electronics misc Electronic computers. Computer science Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios |
authorStr |
Qiao Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)500017794 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
17298814 |
topic_title |
TK7800-8360 QA75.5-76.95 Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios |
topic |
misc TK7800-8360 misc QA75.5-76.95 misc Electronics misc Electronic computers. Computer science |
topic_unstemmed |
misc TK7800-8360 misc QA75.5-76.95 misc Electronics misc Electronic computers. Computer science |
topic_browse |
misc TK7800-8360 misc QA75.5-76.95 misc Electronics misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Advanced Robotic Systems |
hierarchy_parent_id |
500017794 |
hierarchy_top_title |
International Journal of Advanced Robotic Systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)500017794 (DE-600)2202393-8 |
title |
Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios |
ctrlnum |
(DE-627)DOAJ013918125 (DE-599)DOAJ8c1ddba27b674eb09e41091783c5e01c |
title_full |
Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios |
author_sort |
Qiao Huang |
journal |
International Journal of Advanced Robotic Systems |
journalStr |
International Journal of Advanced Robotic Systems |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Qiao Huang Jinlong Liu |
container_volume |
18 |
class |
TK7800-8360 QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Qiao Huang |
doi_str_mv |
10.1177/17298814211008752 |
author2-role |
verfasserin |
title_sort |
practical limitations of lane detection algorithm based on hough transform in challenging scenarios |
callnumber |
TK7800-8360 |
title_auth |
Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios |
abstract |
The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added. |
abstractGer |
The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added. |
abstract_unstemmed |
The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios |
url |
https://doi.org/10.1177/17298814211008752 https://doaj.org/article/8c1ddba27b674eb09e41091783c5e01c https://doaj.org/toc/1729-8814 |
remote_bool |
true |
author2 |
Jinlong Liu |
author2Str |
Jinlong Liu |
ppnlink |
500017794 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1177/17298814211008752 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T20:16:29.833Z |
_version_ |
1803590345514024960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ013918125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310061933.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1177/17298814211008752</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ013918125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8c1ddba27b674eb09e41091783c5e01c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiao Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Advanced Robotic Systems</subfield><subfield code="d">SAGE Publishing, 2008</subfield><subfield code="g">18(2021)</subfield><subfield code="w">(DE-627)500017794</subfield><subfield code="w">(DE-600)2202393-8</subfield><subfield code="x">17298814</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/17298814211008752</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8c1ddba27b674eb09e41091783c5e01c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/17298814211008752</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1729-8814</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2706</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2707</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2890</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.3986397 |