Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans
Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and...
Ausführliche Beschreibung
Autor*in: |
William Blakeney [verfasserIn] Yann Beaulieu [verfasserIn] Marc-Olivier Kiss [verfasserIn] Charles Rivière [verfasserIn] Pascal-André Vendittoli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
In: Acta Orthopaedica - Medical Journals Sweden, 2005, 90(2019), 6, Seite 602-609 |
---|---|
Übergeordnetes Werk: |
volume:90 ; year:2019 ; number:6 ; pages:602-609 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1080/17453674.2019.1675126 |
---|
Katalog-ID: |
DOAJ014130009 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014130009 | ||
003 | DE-627 | ||
005 | 20230310063556.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/17453674.2019.1675126 |2 doi | |
035 | |a (DE-627)DOAJ014130009 | ||
035 | |a (DE-599)DOAJ5c8d8f8ed2834e35bbc6ac35450a4f8f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RD701-811 | |
100 | 0 | |a William Blakeney |e verfasserin |4 aut | |
245 | 1 | 0 | |a Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range. | ||
653 | 0 | |a Orthopedic surgery | |
700 | 0 | |a Yann Beaulieu |e verfasserin |4 aut | |
700 | 0 | |a Marc-Olivier Kiss |e verfasserin |4 aut | |
700 | 0 | |a Charles Rivière |e verfasserin |4 aut | |
700 | 0 | |a Pascal-André Vendittoli |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Acta Orthopaedica |d Medical Journals Sweden, 2005 |g 90(2019), 6, Seite 602-609 |w (DE-627)486185206 |w (DE-600)2187223-5 |x 17453682 |7 nnns |
773 | 1 | 8 | |g volume:90 |g year:2019 |g number:6 |g pages:602-609 |
856 | 4 | 0 | |u https://doi.org/10.1080/17453674.2019.1675126 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5c8d8f8ed2834e35bbc6ac35450a4f8f |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1080/17453674.2019.1675126 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1745-3674 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1745-3682 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 90 |j 2019 |e 6 |h 602-609 |
author_variant |
w b wb y b yb m o k mok c r cr p a v pav |
---|---|
matchkey_str |
article:17453682:2019----::esaiblneihetitdieaiainethnihehnclylgettlnerholsyiua |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
RD |
publishDate |
2019 |
allfields |
10.1080/17453674.2019.1675126 doi (DE-627)DOAJ014130009 (DE-599)DOAJ5c8d8f8ed2834e35bbc6ac35450a4f8f DE-627 ger DE-627 rakwb eng RD701-811 William Blakeney verfasserin aut Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range. Orthopedic surgery Yann Beaulieu verfasserin aut Marc-Olivier Kiss verfasserin aut Charles Rivière verfasserin aut Pascal-André Vendittoli verfasserin aut In Acta Orthopaedica Medical Journals Sweden, 2005 90(2019), 6, Seite 602-609 (DE-627)486185206 (DE-600)2187223-5 17453682 nnns volume:90 year:2019 number:6 pages:602-609 https://doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/article/5c8d8f8ed2834e35bbc6ac35450a4f8f kostenfrei http://dx.doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/toc/1745-3674 Journal toc kostenfrei https://doaj.org/toc/1745-3682 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 90 2019 6 602-609 |
spelling |
10.1080/17453674.2019.1675126 doi (DE-627)DOAJ014130009 (DE-599)DOAJ5c8d8f8ed2834e35bbc6ac35450a4f8f DE-627 ger DE-627 rakwb eng RD701-811 William Blakeney verfasserin aut Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range. Orthopedic surgery Yann Beaulieu verfasserin aut Marc-Olivier Kiss verfasserin aut Charles Rivière verfasserin aut Pascal-André Vendittoli verfasserin aut In Acta Orthopaedica Medical Journals Sweden, 2005 90(2019), 6, Seite 602-609 (DE-627)486185206 (DE-600)2187223-5 17453682 nnns volume:90 year:2019 number:6 pages:602-609 https://doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/article/5c8d8f8ed2834e35bbc6ac35450a4f8f kostenfrei http://dx.doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/toc/1745-3674 Journal toc kostenfrei https://doaj.org/toc/1745-3682 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 90 2019 6 602-609 |
allfields_unstemmed |
10.1080/17453674.2019.1675126 doi (DE-627)DOAJ014130009 (DE-599)DOAJ5c8d8f8ed2834e35bbc6ac35450a4f8f DE-627 ger DE-627 rakwb eng RD701-811 William Blakeney verfasserin aut Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range. Orthopedic surgery Yann Beaulieu verfasserin aut Marc-Olivier Kiss verfasserin aut Charles Rivière verfasserin aut Pascal-André Vendittoli verfasserin aut In Acta Orthopaedica Medical Journals Sweden, 2005 90(2019), 6, Seite 602-609 (DE-627)486185206 (DE-600)2187223-5 17453682 nnns volume:90 year:2019 number:6 pages:602-609 https://doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/article/5c8d8f8ed2834e35bbc6ac35450a4f8f kostenfrei http://dx.doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/toc/1745-3674 Journal toc kostenfrei https://doaj.org/toc/1745-3682 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 90 2019 6 602-609 |
allfieldsGer |
10.1080/17453674.2019.1675126 doi (DE-627)DOAJ014130009 (DE-599)DOAJ5c8d8f8ed2834e35bbc6ac35450a4f8f DE-627 ger DE-627 rakwb eng RD701-811 William Blakeney verfasserin aut Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range. Orthopedic surgery Yann Beaulieu verfasserin aut Marc-Olivier Kiss verfasserin aut Charles Rivière verfasserin aut Pascal-André Vendittoli verfasserin aut In Acta Orthopaedica Medical Journals Sweden, 2005 90(2019), 6, Seite 602-609 (DE-627)486185206 (DE-600)2187223-5 17453682 nnns volume:90 year:2019 number:6 pages:602-609 https://doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/article/5c8d8f8ed2834e35bbc6ac35450a4f8f kostenfrei http://dx.doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/toc/1745-3674 Journal toc kostenfrei https://doaj.org/toc/1745-3682 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 90 2019 6 602-609 |
allfieldsSound |
10.1080/17453674.2019.1675126 doi (DE-627)DOAJ014130009 (DE-599)DOAJ5c8d8f8ed2834e35bbc6ac35450a4f8f DE-627 ger DE-627 rakwb eng RD701-811 William Blakeney verfasserin aut Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range. Orthopedic surgery Yann Beaulieu verfasserin aut Marc-Olivier Kiss verfasserin aut Charles Rivière verfasserin aut Pascal-André Vendittoli verfasserin aut In Acta Orthopaedica Medical Journals Sweden, 2005 90(2019), 6, Seite 602-609 (DE-627)486185206 (DE-600)2187223-5 17453682 nnns volume:90 year:2019 number:6 pages:602-609 https://doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/article/5c8d8f8ed2834e35bbc6ac35450a4f8f kostenfrei http://dx.doi.org/10.1080/17453674.2019.1675126 kostenfrei https://doaj.org/toc/1745-3674 Journal toc kostenfrei https://doaj.org/toc/1745-3682 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 90 2019 6 602-609 |
language |
English |
source |
In Acta Orthopaedica 90(2019), 6, Seite 602-609 volume:90 year:2019 number:6 pages:602-609 |
sourceStr |
In Acta Orthopaedica 90(2019), 6, Seite 602-609 volume:90 year:2019 number:6 pages:602-609 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Orthopedic surgery |
isfreeaccess_bool |
true |
container_title |
Acta Orthopaedica |
authorswithroles_txt_mv |
William Blakeney @@aut@@ Yann Beaulieu @@aut@@ Marc-Olivier Kiss @@aut@@ Charles Rivière @@aut@@ Pascal-André Vendittoli @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
486185206 |
id |
DOAJ014130009 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014130009</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310063556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/17453674.2019.1675126</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014130009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5c8d8f8ed2834e35bbc6ac35450a4f8f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RD701-811</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">William Blakeney</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Orthopedic surgery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yann Beaulieu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marc-Olivier Kiss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Rivière</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pascal-André Vendittoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Acta Orthopaedica</subfield><subfield code="d">Medical Journals Sweden, 2005</subfield><subfield code="g">90(2019), 6, Seite 602-609</subfield><subfield code="w">(DE-627)486185206</subfield><subfield code="w">(DE-600)2187223-5</subfield><subfield code="x">17453682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:90</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:602-609</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/17453674.2019.1675126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5c8d8f8ed2834e35bbc6ac35450a4f8f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/17453674.2019.1675126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1745-3674</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1745-3682</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">90</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="h">602-609</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
William Blakeney |
spellingShingle |
William Blakeney misc RD701-811 misc Orthopedic surgery Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans |
authorStr |
William Blakeney |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)486185206 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RD701-811 |
illustrated |
Not Illustrated |
issn |
17453682 |
topic_title |
RD701-811 Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans |
topic |
misc RD701-811 misc Orthopedic surgery |
topic_unstemmed |
misc RD701-811 misc Orthopedic surgery |
topic_browse |
misc RD701-811 misc Orthopedic surgery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Acta Orthopaedica |
hierarchy_parent_id |
486185206 |
hierarchy_top_title |
Acta Orthopaedica |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)486185206 (DE-600)2187223-5 |
title |
Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans |
ctrlnum |
(DE-627)DOAJ014130009 (DE-599)DOAJ5c8d8f8ed2834e35bbc6ac35450a4f8f |
title_full |
Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans |
author_sort |
William Blakeney |
journal |
Acta Orthopaedica |
journalStr |
Acta Orthopaedica |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
602 |
author_browse |
William Blakeney Yann Beaulieu Marc-Olivier Kiss Charles Rivière Pascal-André Vendittoli |
container_volume |
90 |
class |
RD701-811 |
format_se |
Elektronische Aufsätze |
author-letter |
William Blakeney |
doi_str_mv |
10.1080/17453674.2019.1675126 |
author2-role |
verfasserin |
title_sort |
less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-d bone models created from ct-scans |
callnumber |
RD701-811 |
title_auth |
Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans |
abstract |
Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range. |
abstractGer |
Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range. |
abstract_unstemmed |
Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans |
url |
https://doi.org/10.1080/17453674.2019.1675126 https://doaj.org/article/5c8d8f8ed2834e35bbc6ac35450a4f8f http://dx.doi.org/10.1080/17453674.2019.1675126 https://doaj.org/toc/1745-3674 https://doaj.org/toc/1745-3682 |
remote_bool |
true |
author2 |
Yann Beaulieu Marc-Olivier Kiss Charles Rivière Pascal-André Vendittoli |
author2Str |
Yann Beaulieu Marc-Olivier Kiss Charles Rivière Pascal-André Vendittoli |
ppnlink |
486185206 |
callnumber-subject |
RD - Surgery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/17453674.2019.1675126 |
callnumber-a |
RD701-811 |
up_date |
2024-07-03T21:24:41.170Z |
_version_ |
1803594635592859648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014130009</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310063556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/17453674.2019.1675126</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014130009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5c8d8f8ed2834e35bbc6ac35450a4f8f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RD701-811</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">William Blakeney</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and purpose — Mechanical alignment techniques for total knee arthroplasty (TKA) introduce significant anatomic alteration and secondary ligament imbalances. We propose a restricted kinematic alignment (rKA) protocol to minimize these issues and improve TKA clinical outcomes. Patients and methods — rKA tibial and femoral bone resections were simulated on 1,000 knee CT scans from a database of patients undergoing TKA. rKA was defined by the following criteria: independent tibial and femoral cuts within 5° of the bone neutral mechanical axis, with a resulting HKA within 3° of neutral. Imbalances in the extension space, flexion space at 90°, medial compartment and lateral compartment were calculated and compared with measured resection mechanical alignment (MA) results. 2 MA techniques were simulated for rotation using the surgical transepicondylar axis (TEA) and 3° to the posterior condyles (PC). Results — Extension space imbalances ≥ 3 mm occurred in 33% of TKAs with MA technique versus 8.3% with rKA (p < 0.001). Similarly, more frequent flexion space imbalance ≥ 3mm was created by MA technique (TEA 34% or 3° PC 15%) versus rKA (6.4%, p < 0.001). Using MA with TEA or PC, there were only 49% and 63% of the knees respectively with < 3 mm of imbalance throughout the extension and flexion spaces and medial and lateral compartments versus 92% using rKA (p < 0.001). Interpretation — significantly fewer imbalances are created using rKA versus MA for TKA. rKA may be the best compromise, by helping the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Orthopedic surgery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yann Beaulieu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marc-Olivier Kiss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Rivière</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pascal-André Vendittoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Acta Orthopaedica</subfield><subfield code="d">Medical Journals Sweden, 2005</subfield><subfield code="g">90(2019), 6, Seite 602-609</subfield><subfield code="w">(DE-627)486185206</subfield><subfield code="w">(DE-600)2187223-5</subfield><subfield code="x">17453682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:90</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:602-609</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/17453674.2019.1675126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5c8d8f8ed2834e35bbc6ac35450a4f8f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/17453674.2019.1675126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1745-3674</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1745-3682</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">90</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="h">602-609</subfield></datafield></record></collection>
|
score |
7.401947 |