Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis
Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to tradi...
Ausführliche Beschreibung
Autor*in: |
Ricardo Sarabia [verfasserIn] Arturo Aquino [verfasserIn] Juan Manuel Ponce [verfasserIn] Gilberto López [verfasserIn] José Manuel Andújar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 12(2020), 5, p 748 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2020 ; number:5, p 748 |
Links: |
---|
DOI / URN: |
10.3390/rs12050748 |
---|
Katalog-ID: |
DOAJ014219395 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014219395 | ||
003 | DE-627 | ||
005 | 20230310064211.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs12050748 |2 doi | |
035 | |a (DE-627)DOAJ014219395 | ||
035 | |a (DE-599)DOAJb7f953286e5c4f418639ec5be2764745 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Ricardo Sarabia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards. | ||
650 | 4 | |a aerial imagery | |
650 | 4 | |a image analysis | |
650 | 4 | |a multispectral imagery | |
650 | 4 | |a crop tree | |
650 | 4 | |a phenotyping | |
650 | 4 | |a plant population | |
650 | 4 | |a uav | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Arturo Aquino |e verfasserin |4 aut | |
700 | 0 | |a Juan Manuel Ponce |e verfasserin |4 aut | |
700 | 0 | |a Gilberto López |e verfasserin |4 aut | |
700 | 0 | |a José Manuel Andújar |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 12(2020), 5, p 748 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2020 |g number:5, p 748 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs12050748 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b7f953286e5c4f418639ec5be2764745 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/12/5/748 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2020 |e 5, p 748 |
author_variant |
r s rs a a aa j m p jmp g l gl j m a jma |
---|---|
matchkey_str |
article:20724292:2020----::uoaeietfctoocoteconfouvutsetaiaeyyeno |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/rs12050748 doi (DE-627)DOAJ014219395 (DE-599)DOAJb7f953286e5c4f418639ec5be2764745 DE-627 ger DE-627 rakwb eng Ricardo Sarabia verfasserin aut Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards. aerial imagery image analysis multispectral imagery crop tree phenotyping plant population uav Science Q Arturo Aquino verfasserin aut Juan Manuel Ponce verfasserin aut Gilberto López verfasserin aut José Manuel Andújar verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 5, p 748 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:5, p 748 https://doi.org/10.3390/rs12050748 kostenfrei https://doaj.org/article/b7f953286e5c4f418639ec5be2764745 kostenfrei https://www.mdpi.com/2072-4292/12/5/748 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 5, p 748 |
spelling |
10.3390/rs12050748 doi (DE-627)DOAJ014219395 (DE-599)DOAJb7f953286e5c4f418639ec5be2764745 DE-627 ger DE-627 rakwb eng Ricardo Sarabia verfasserin aut Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards. aerial imagery image analysis multispectral imagery crop tree phenotyping plant population uav Science Q Arturo Aquino verfasserin aut Juan Manuel Ponce verfasserin aut Gilberto López verfasserin aut José Manuel Andújar verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 5, p 748 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:5, p 748 https://doi.org/10.3390/rs12050748 kostenfrei https://doaj.org/article/b7f953286e5c4f418639ec5be2764745 kostenfrei https://www.mdpi.com/2072-4292/12/5/748 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 5, p 748 |
allfields_unstemmed |
10.3390/rs12050748 doi (DE-627)DOAJ014219395 (DE-599)DOAJb7f953286e5c4f418639ec5be2764745 DE-627 ger DE-627 rakwb eng Ricardo Sarabia verfasserin aut Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards. aerial imagery image analysis multispectral imagery crop tree phenotyping plant population uav Science Q Arturo Aquino verfasserin aut Juan Manuel Ponce verfasserin aut Gilberto López verfasserin aut José Manuel Andújar verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 5, p 748 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:5, p 748 https://doi.org/10.3390/rs12050748 kostenfrei https://doaj.org/article/b7f953286e5c4f418639ec5be2764745 kostenfrei https://www.mdpi.com/2072-4292/12/5/748 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 5, p 748 |
allfieldsGer |
10.3390/rs12050748 doi (DE-627)DOAJ014219395 (DE-599)DOAJb7f953286e5c4f418639ec5be2764745 DE-627 ger DE-627 rakwb eng Ricardo Sarabia verfasserin aut Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards. aerial imagery image analysis multispectral imagery crop tree phenotyping plant population uav Science Q Arturo Aquino verfasserin aut Juan Manuel Ponce verfasserin aut Gilberto López verfasserin aut José Manuel Andújar verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 5, p 748 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:5, p 748 https://doi.org/10.3390/rs12050748 kostenfrei https://doaj.org/article/b7f953286e5c4f418639ec5be2764745 kostenfrei https://www.mdpi.com/2072-4292/12/5/748 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 5, p 748 |
allfieldsSound |
10.3390/rs12050748 doi (DE-627)DOAJ014219395 (DE-599)DOAJb7f953286e5c4f418639ec5be2764745 DE-627 ger DE-627 rakwb eng Ricardo Sarabia verfasserin aut Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards. aerial imagery image analysis multispectral imagery crop tree phenotyping plant population uav Science Q Arturo Aquino verfasserin aut Juan Manuel Ponce verfasserin aut Gilberto López verfasserin aut José Manuel Andújar verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 5, p 748 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:5, p 748 https://doi.org/10.3390/rs12050748 kostenfrei https://doaj.org/article/b7f953286e5c4f418639ec5be2764745 kostenfrei https://www.mdpi.com/2072-4292/12/5/748 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 5, p 748 |
language |
English |
source |
In Remote Sensing 12(2020), 5, p 748 volume:12 year:2020 number:5, p 748 |
sourceStr |
In Remote Sensing 12(2020), 5, p 748 volume:12 year:2020 number:5, p 748 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
aerial imagery image analysis multispectral imagery crop tree phenotyping plant population uav Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Ricardo Sarabia @@aut@@ Arturo Aquino @@aut@@ Juan Manuel Ponce @@aut@@ Gilberto López @@aut@@ José Manuel Andújar @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ014219395 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014219395</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310064211.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs12050748</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014219395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb7f953286e5c4f418639ec5be2764745</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ricardo Sarabia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerial imagery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multispectral imagery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenotyping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant population</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uav</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arturo Aquino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Manuel Ponce</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gilberto López</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Manuel Andújar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2020), 5, p 748</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 748</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs12050748</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b7f953286e5c4f418639ec5be2764745</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/12/5/748</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 748</subfield></datafield></record></collection>
|
author |
Ricardo Sarabia |
spellingShingle |
Ricardo Sarabia misc aerial imagery misc image analysis misc multispectral imagery misc crop tree misc phenotyping misc plant population misc uav misc Science misc Q Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis |
authorStr |
Ricardo Sarabia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis aerial imagery image analysis multispectral imagery crop tree phenotyping plant population uav |
topic |
misc aerial imagery misc image analysis misc multispectral imagery misc crop tree misc phenotyping misc plant population misc uav misc Science misc Q |
topic_unstemmed |
misc aerial imagery misc image analysis misc multispectral imagery misc crop tree misc phenotyping misc plant population misc uav misc Science misc Q |
topic_browse |
misc aerial imagery misc image analysis misc multispectral imagery misc crop tree misc phenotyping misc plant population misc uav misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis |
ctrlnum |
(DE-627)DOAJ014219395 (DE-599)DOAJb7f953286e5c4f418639ec5be2764745 |
title_full |
Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis |
author_sort |
Ricardo Sarabia |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Ricardo Sarabia Arturo Aquino Juan Manuel Ponce Gilberto López José Manuel Andújar |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Ricardo Sarabia |
doi_str_mv |
10.3390/rs12050748 |
author2-role |
verfasserin |
title_sort |
automated identification of crop tree crowns from uav multispectral imagery by means of morphological image analysis |
title_auth |
Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis |
abstract |
Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards. |
abstractGer |
Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards. |
abstract_unstemmed |
Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
5, p 748 |
title_short |
Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis |
url |
https://doi.org/10.3390/rs12050748 https://doaj.org/article/b7f953286e5c4f418639ec5be2764745 https://www.mdpi.com/2072-4292/12/5/748 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Arturo Aquino Juan Manuel Ponce Gilberto López José Manuel Andújar |
author2Str |
Arturo Aquino Juan Manuel Ponce Gilberto López José Manuel Andújar |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs12050748 |
up_date |
2024-07-03T21:54:52.265Z |
_version_ |
1803596534661513216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014219395</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310064211.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs12050748</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014219395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb7f953286e5c4f418639ec5be2764745</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ricardo Sarabia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerial imagery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multispectral imagery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenotyping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant population</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uav</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arturo Aquino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Manuel Ponce</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gilberto López</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Manuel Andújar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2020), 5, p 748</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 748</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs12050748</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b7f953286e5c4f418639ec5be2764745</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/12/5/748</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 748</subfield></datafield></record></collection>
|
score |
7.401272 |