DNF: Feature Point Matching Pairs Filter Based on Descriptor Net
Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatc...
Ausführliche Beschreibung
Autor*in: |
Feng Ye [verfasserIn] Lingfeng Su [verfasserIn] Yizong Lai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 87561-87573 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:87561-87573 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2925401 |
---|
Katalog-ID: |
DOAJ01423582X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ01423582X | ||
003 | DE-627 | ||
005 | 20230310064308.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2925401 |2 doi | |
035 | |a (DE-627)DOAJ01423582X | ||
035 | |a (DE-599)DOAJ4a01547aac5a44049ef7403a7238fa1f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Feng Ye |e verfasserin |4 aut | |
245 | 1 | 0 | |a DNF: Feature Point Matching Pairs Filter Based on Descriptor Net |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well. | ||
650 | 4 | |a Image registration | |
650 | 4 | |a mismatch removal | |
650 | 4 | |a wide baseline matching | |
650 | 4 | |a graph-based technique | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Lingfeng Su |e verfasserin |4 aut | |
700 | 0 | |a Yizong Lai |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 87561-87573 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:87561-87573 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2925401 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4a01547aac5a44049ef7403a7238fa1f |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8747438/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 87561-87573 |
author_variant |
f y fy l s ls y l yl |
---|---|
matchkey_str |
article:21693536:2019----::nfaueonmthnpisitrae |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2925401 doi (DE-627)DOAJ01423582X (DE-599)DOAJ4a01547aac5a44049ef7403a7238fa1f DE-627 ger DE-627 rakwb eng TK1-9971 Feng Ye verfasserin aut DNF: Feature Point Matching Pairs Filter Based on Descriptor Net 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well. Image registration mismatch removal wide baseline matching graph-based technique Electrical engineering. Electronics. Nuclear engineering Lingfeng Su verfasserin aut Yizong Lai verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 87561-87573 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:87561-87573 https://doi.org/10.1109/ACCESS.2019.2925401 kostenfrei https://doaj.org/article/4a01547aac5a44049ef7403a7238fa1f kostenfrei https://ieeexplore.ieee.org/document/8747438/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 87561-87573 |
spelling |
10.1109/ACCESS.2019.2925401 doi (DE-627)DOAJ01423582X (DE-599)DOAJ4a01547aac5a44049ef7403a7238fa1f DE-627 ger DE-627 rakwb eng TK1-9971 Feng Ye verfasserin aut DNF: Feature Point Matching Pairs Filter Based on Descriptor Net 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well. Image registration mismatch removal wide baseline matching graph-based technique Electrical engineering. Electronics. Nuclear engineering Lingfeng Su verfasserin aut Yizong Lai verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 87561-87573 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:87561-87573 https://doi.org/10.1109/ACCESS.2019.2925401 kostenfrei https://doaj.org/article/4a01547aac5a44049ef7403a7238fa1f kostenfrei https://ieeexplore.ieee.org/document/8747438/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 87561-87573 |
allfields_unstemmed |
10.1109/ACCESS.2019.2925401 doi (DE-627)DOAJ01423582X (DE-599)DOAJ4a01547aac5a44049ef7403a7238fa1f DE-627 ger DE-627 rakwb eng TK1-9971 Feng Ye verfasserin aut DNF: Feature Point Matching Pairs Filter Based on Descriptor Net 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well. Image registration mismatch removal wide baseline matching graph-based technique Electrical engineering. Electronics. Nuclear engineering Lingfeng Su verfasserin aut Yizong Lai verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 87561-87573 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:87561-87573 https://doi.org/10.1109/ACCESS.2019.2925401 kostenfrei https://doaj.org/article/4a01547aac5a44049ef7403a7238fa1f kostenfrei https://ieeexplore.ieee.org/document/8747438/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 87561-87573 |
allfieldsGer |
10.1109/ACCESS.2019.2925401 doi (DE-627)DOAJ01423582X (DE-599)DOAJ4a01547aac5a44049ef7403a7238fa1f DE-627 ger DE-627 rakwb eng TK1-9971 Feng Ye verfasserin aut DNF: Feature Point Matching Pairs Filter Based on Descriptor Net 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well. Image registration mismatch removal wide baseline matching graph-based technique Electrical engineering. Electronics. Nuclear engineering Lingfeng Su verfasserin aut Yizong Lai verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 87561-87573 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:87561-87573 https://doi.org/10.1109/ACCESS.2019.2925401 kostenfrei https://doaj.org/article/4a01547aac5a44049ef7403a7238fa1f kostenfrei https://ieeexplore.ieee.org/document/8747438/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 87561-87573 |
allfieldsSound |
10.1109/ACCESS.2019.2925401 doi (DE-627)DOAJ01423582X (DE-599)DOAJ4a01547aac5a44049ef7403a7238fa1f DE-627 ger DE-627 rakwb eng TK1-9971 Feng Ye verfasserin aut DNF: Feature Point Matching Pairs Filter Based on Descriptor Net 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well. Image registration mismatch removal wide baseline matching graph-based technique Electrical engineering. Electronics. Nuclear engineering Lingfeng Su verfasserin aut Yizong Lai verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 87561-87573 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:87561-87573 https://doi.org/10.1109/ACCESS.2019.2925401 kostenfrei https://doaj.org/article/4a01547aac5a44049ef7403a7238fa1f kostenfrei https://ieeexplore.ieee.org/document/8747438/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 87561-87573 |
language |
English |
source |
In IEEE Access 7(2019), Seite 87561-87573 volume:7 year:2019 pages:87561-87573 |
sourceStr |
In IEEE Access 7(2019), Seite 87561-87573 volume:7 year:2019 pages:87561-87573 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Image registration mismatch removal wide baseline matching graph-based technique Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Feng Ye @@aut@@ Lingfeng Su @@aut@@ Yizong Lai @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ01423582X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01423582X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310064308.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2925401</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01423582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a01547aac5a44049ef7403a7238fa1f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Feng Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DNF: Feature Point Matching Pairs Filter Based on Descriptor Net</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image registration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mismatch removal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wide baseline matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graph-based technique</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lingfeng Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yizong Lai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 87561-87573</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:87561-87573</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2925401</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a01547aac5a44049ef7403a7238fa1f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8747438/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">87561-87573</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Feng Ye |
spellingShingle |
Feng Ye misc TK1-9971 misc Image registration misc mismatch removal misc wide baseline matching misc graph-based technique misc Electrical engineering. Electronics. Nuclear engineering DNF: Feature Point Matching Pairs Filter Based on Descriptor Net |
authorStr |
Feng Ye |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 DNF: Feature Point Matching Pairs Filter Based on Descriptor Net Image registration mismatch removal wide baseline matching graph-based technique |
topic |
misc TK1-9971 misc Image registration misc mismatch removal misc wide baseline matching misc graph-based technique misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Image registration misc mismatch removal misc wide baseline matching misc graph-based technique misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Image registration misc mismatch removal misc wide baseline matching misc graph-based technique misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
DNF: Feature Point Matching Pairs Filter Based on Descriptor Net |
ctrlnum |
(DE-627)DOAJ01423582X (DE-599)DOAJ4a01547aac5a44049ef7403a7238fa1f |
title_full |
DNF: Feature Point Matching Pairs Filter Based on Descriptor Net |
author_sort |
Feng Ye |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
87561 |
author_browse |
Feng Ye Lingfeng Su Yizong Lai |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Feng Ye |
doi_str_mv |
10.1109/ACCESS.2019.2925401 |
author2-role |
verfasserin |
title_sort |
dnf: feature point matching pairs filter based on descriptor net |
callnumber |
TK1-9971 |
title_auth |
DNF: Feature Point Matching Pairs Filter Based on Descriptor Net |
abstract |
Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well. |
abstractGer |
Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well. |
abstract_unstemmed |
Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
DNF: Feature Point Matching Pairs Filter Based on Descriptor Net |
url |
https://doi.org/10.1109/ACCESS.2019.2925401 https://doaj.org/article/4a01547aac5a44049ef7403a7238fa1f https://ieeexplore.ieee.org/document/8747438/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Lingfeng Su Yizong Lai |
author2Str |
Lingfeng Su Yizong Lai |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2925401 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T22:00:08.357Z |
_version_ |
1803596866109046784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01423582X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310064308.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2925401</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01423582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a01547aac5a44049ef7403a7238fa1f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Feng Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DNF: Feature Point Matching Pairs Filter Based on Descriptor Net</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wide-baseline image registration under out-of-plane rotation and larger viewpoint change is still challenging. Most of the commonly used matching algorithms are not invariant to affine transformation. They heavily rely on the local features of image patches and ignore global information, the mismatch is inevitable and greatly affect the accuracy of image registration. To address this issue, we propose a feature point matching pair filter based on global spatial position correspondences of feature points, coined Descriptor Net Filter (DNF). We put forward two criteria to evaluate matching quality. One is the local matching quality computed by independent local feature, the other is the global matching quality relying on geometric network constraint. Combining the advantages of both local feature and large-scale geometric constraint, our method removes mismatches effectively. The experiments on both planar scenes and 3D objects from several standard datasets show that the DNF significantly enhances the matching precision and retains more correct matches as well.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image registration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mismatch removal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wide baseline matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graph-based technique</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lingfeng Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yizong Lai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 87561-87573</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:87561-87573</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2925401</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a01547aac5a44049ef7403a7238fa1f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8747438/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">87561-87573</subfield></datafield></record></collection>
|
score |
7.399886 |