An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks
The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucia...
Ausführliche Beschreibung
Autor*in: |
Teodoro Macias-Escobar [verfasserIn] Laura Cruz-Reyes [verfasserIn] César Medina-Trejo [verfasserIn] Claudia Gómez-Santillán [verfasserIn] Nelson Rangel-Valdez [verfasserIn] Héctor Fraire-Huacuja [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mathematical and Computational Applications - MDPI AG, 2017, 26(2021), 2, p 35 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2021 ; number:2, p 35 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/mca26020035 |
---|
Katalog-ID: |
DOAJ014258056 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014258056 | ||
003 | DE-627 | ||
005 | 20240412183448.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/mca26020035 |2 doi | |
035 | |a (DE-627)DOAJ014258056 | ||
035 | |a (DE-599)DOAJ05f6d5f6dc58418294fd4fb8d444164c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T57-57.97 | |
050 | 0 | |a QA1-939 | |
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Teodoro Macias-Escobar |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users. | ||
650 | 4 | |a decision making process | |
650 | 4 | |a cognitive tasks | |
650 | 4 | |a recommender system | |
650 | 4 | |a project portfolio selection problem | |
650 | 4 | |a usability evaluation | |
653 | 0 | |a Applied mathematics. Quantitative methods | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Laura Cruz-Reyes |e verfasserin |4 aut | |
700 | 0 | |a César Medina-Trejo |e verfasserin |4 aut | |
700 | 0 | |a Claudia Gómez-Santillán |e verfasserin |4 aut | |
700 | 0 | |a Nelson Rangel-Valdez |e verfasserin |4 aut | |
700 | 0 | |a Héctor Fraire-Huacuja |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematical and Computational Applications |d MDPI AG, 2017 |g 26(2021), 2, p 35 |w (DE-627)877333904 |w (DE-600)2880856-3 |x 22978747 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2021 |g number:2, p 35 |
856 | 4 | 0 | |u https://doi.org/10.3390/mca26020035 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/05f6d5f6dc58418294fd4fb8d444164c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2297-8747/26/2/35 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1300-686X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2297-8747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 2021 |e 2, p 35 |
author_variant |
t m e tme l c r lcr c m t cmt c g s cgs n r v nrv h f h hfh |
---|---|
matchkey_str |
article:22978747:2021----::nneatvrcmedtossefreiinaigaeotehrce |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
T |
publishDate |
2021 |
allfields |
10.3390/mca26020035 doi (DE-627)DOAJ014258056 (DE-599)DOAJ05f6d5f6dc58418294fd4fb8d444164c DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 QA75.5-76.95 Teodoro Macias-Escobar verfasserin aut An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users. decision making process cognitive tasks recommender system project portfolio selection problem usability evaluation Applied mathematics. Quantitative methods Mathematics Electronic computers. Computer science Laura Cruz-Reyes verfasserin aut César Medina-Trejo verfasserin aut Claudia Gómez-Santillán verfasserin aut Nelson Rangel-Valdez verfasserin aut Héctor Fraire-Huacuja verfasserin aut In Mathematical and Computational Applications MDPI AG, 2017 26(2021), 2, p 35 (DE-627)877333904 (DE-600)2880856-3 22978747 nnns volume:26 year:2021 number:2, p 35 https://doi.org/10.3390/mca26020035 kostenfrei https://doaj.org/article/05f6d5f6dc58418294fd4fb8d444164c kostenfrei https://www.mdpi.com/2297-8747/26/2/35 kostenfrei https://doaj.org/toc/1300-686X Journal toc kostenfrei https://doaj.org/toc/2297-8747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 35 |
spelling |
10.3390/mca26020035 doi (DE-627)DOAJ014258056 (DE-599)DOAJ05f6d5f6dc58418294fd4fb8d444164c DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 QA75.5-76.95 Teodoro Macias-Escobar verfasserin aut An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users. decision making process cognitive tasks recommender system project portfolio selection problem usability evaluation Applied mathematics. Quantitative methods Mathematics Electronic computers. Computer science Laura Cruz-Reyes verfasserin aut César Medina-Trejo verfasserin aut Claudia Gómez-Santillán verfasserin aut Nelson Rangel-Valdez verfasserin aut Héctor Fraire-Huacuja verfasserin aut In Mathematical and Computational Applications MDPI AG, 2017 26(2021), 2, p 35 (DE-627)877333904 (DE-600)2880856-3 22978747 nnns volume:26 year:2021 number:2, p 35 https://doi.org/10.3390/mca26020035 kostenfrei https://doaj.org/article/05f6d5f6dc58418294fd4fb8d444164c kostenfrei https://www.mdpi.com/2297-8747/26/2/35 kostenfrei https://doaj.org/toc/1300-686X Journal toc kostenfrei https://doaj.org/toc/2297-8747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 35 |
allfields_unstemmed |
10.3390/mca26020035 doi (DE-627)DOAJ014258056 (DE-599)DOAJ05f6d5f6dc58418294fd4fb8d444164c DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 QA75.5-76.95 Teodoro Macias-Escobar verfasserin aut An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users. decision making process cognitive tasks recommender system project portfolio selection problem usability evaluation Applied mathematics. Quantitative methods Mathematics Electronic computers. Computer science Laura Cruz-Reyes verfasserin aut César Medina-Trejo verfasserin aut Claudia Gómez-Santillán verfasserin aut Nelson Rangel-Valdez verfasserin aut Héctor Fraire-Huacuja verfasserin aut In Mathematical and Computational Applications MDPI AG, 2017 26(2021), 2, p 35 (DE-627)877333904 (DE-600)2880856-3 22978747 nnns volume:26 year:2021 number:2, p 35 https://doi.org/10.3390/mca26020035 kostenfrei https://doaj.org/article/05f6d5f6dc58418294fd4fb8d444164c kostenfrei https://www.mdpi.com/2297-8747/26/2/35 kostenfrei https://doaj.org/toc/1300-686X Journal toc kostenfrei https://doaj.org/toc/2297-8747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 35 |
allfieldsGer |
10.3390/mca26020035 doi (DE-627)DOAJ014258056 (DE-599)DOAJ05f6d5f6dc58418294fd4fb8d444164c DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 QA75.5-76.95 Teodoro Macias-Escobar verfasserin aut An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users. decision making process cognitive tasks recommender system project portfolio selection problem usability evaluation Applied mathematics. Quantitative methods Mathematics Electronic computers. Computer science Laura Cruz-Reyes verfasserin aut César Medina-Trejo verfasserin aut Claudia Gómez-Santillán verfasserin aut Nelson Rangel-Valdez verfasserin aut Héctor Fraire-Huacuja verfasserin aut In Mathematical and Computational Applications MDPI AG, 2017 26(2021), 2, p 35 (DE-627)877333904 (DE-600)2880856-3 22978747 nnns volume:26 year:2021 number:2, p 35 https://doi.org/10.3390/mca26020035 kostenfrei https://doaj.org/article/05f6d5f6dc58418294fd4fb8d444164c kostenfrei https://www.mdpi.com/2297-8747/26/2/35 kostenfrei https://doaj.org/toc/1300-686X Journal toc kostenfrei https://doaj.org/toc/2297-8747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 35 |
allfieldsSound |
10.3390/mca26020035 doi (DE-627)DOAJ014258056 (DE-599)DOAJ05f6d5f6dc58418294fd4fb8d444164c DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 QA75.5-76.95 Teodoro Macias-Escobar verfasserin aut An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users. decision making process cognitive tasks recommender system project portfolio selection problem usability evaluation Applied mathematics. Quantitative methods Mathematics Electronic computers. Computer science Laura Cruz-Reyes verfasserin aut César Medina-Trejo verfasserin aut Claudia Gómez-Santillán verfasserin aut Nelson Rangel-Valdez verfasserin aut Héctor Fraire-Huacuja verfasserin aut In Mathematical and Computational Applications MDPI AG, 2017 26(2021), 2, p 35 (DE-627)877333904 (DE-600)2880856-3 22978747 nnns volume:26 year:2021 number:2, p 35 https://doi.org/10.3390/mca26020035 kostenfrei https://doaj.org/article/05f6d5f6dc58418294fd4fb8d444164c kostenfrei https://www.mdpi.com/2297-8747/26/2/35 kostenfrei https://doaj.org/toc/1300-686X Journal toc kostenfrei https://doaj.org/toc/2297-8747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 35 |
language |
English |
source |
In Mathematical and Computational Applications 26(2021), 2, p 35 volume:26 year:2021 number:2, p 35 |
sourceStr |
In Mathematical and Computational Applications 26(2021), 2, p 35 volume:26 year:2021 number:2, p 35 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
decision making process cognitive tasks recommender system project portfolio selection problem usability evaluation Applied mathematics. Quantitative methods Mathematics Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Mathematical and Computational Applications |
authorswithroles_txt_mv |
Teodoro Macias-Escobar @@aut@@ Laura Cruz-Reyes @@aut@@ César Medina-Trejo @@aut@@ Claudia Gómez-Santillán @@aut@@ Nelson Rangel-Valdez @@aut@@ Héctor Fraire-Huacuja @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
877333904 |
id |
DOAJ014258056 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014258056</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412183448.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mca26020035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014258056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ05f6d5f6dc58418294fd4fb8d444164c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57-57.97</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Teodoro Macias-Escobar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decision making process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive tasks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recommender system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">project portfolio selection problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">usability evaluation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied mathematics. Quantitative methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Cruz-Reyes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">César Medina-Trejo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Gómez-Santillán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nelson Rangel-Valdez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Héctor Fraire-Huacuja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical and Computational Applications</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">26(2021), 2, p 35</subfield><subfield code="w">(DE-627)877333904</subfield><subfield code="w">(DE-600)2880856-3</subfield><subfield code="x">22978747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 35</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mca26020035</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/05f6d5f6dc58418294fd4fb8d444164c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2297-8747/26/2/35</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1300-686X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2297-8747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 35</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Teodoro Macias-Escobar |
spellingShingle |
Teodoro Macias-Escobar misc T57-57.97 misc QA1-939 misc QA75.5-76.95 misc decision making process misc cognitive tasks misc recommender system misc project portfolio selection problem misc usability evaluation misc Applied mathematics. Quantitative methods misc Mathematics misc Electronic computers. Computer science An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks |
authorStr |
Teodoro Macias-Escobar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)877333904 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T57-57 |
illustrated |
Not Illustrated |
issn |
22978747 |
topic_title |
T57-57.97 QA1-939 QA75.5-76.95 An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks decision making process cognitive tasks recommender system project portfolio selection problem usability evaluation |
topic |
misc T57-57.97 misc QA1-939 misc QA75.5-76.95 misc decision making process misc cognitive tasks misc recommender system misc project portfolio selection problem misc usability evaluation misc Applied mathematics. Quantitative methods misc Mathematics misc Electronic computers. Computer science |
topic_unstemmed |
misc T57-57.97 misc QA1-939 misc QA75.5-76.95 misc decision making process misc cognitive tasks misc recommender system misc project portfolio selection problem misc usability evaluation misc Applied mathematics. Quantitative methods misc Mathematics misc Electronic computers. Computer science |
topic_browse |
misc T57-57.97 misc QA1-939 misc QA75.5-76.95 misc decision making process misc cognitive tasks misc recommender system misc project portfolio selection problem misc usability evaluation misc Applied mathematics. Quantitative methods misc Mathematics misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematical and Computational Applications |
hierarchy_parent_id |
877333904 |
hierarchy_top_title |
Mathematical and Computational Applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)877333904 (DE-600)2880856-3 |
title |
An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks |
ctrlnum |
(DE-627)DOAJ014258056 (DE-599)DOAJ05f6d5f6dc58418294fd4fb8d444164c |
title_full |
An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks |
author_sort |
Teodoro Macias-Escobar |
journal |
Mathematical and Computational Applications |
journalStr |
Mathematical and Computational Applications |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Teodoro Macias-Escobar Laura Cruz-Reyes César Medina-Trejo Claudia Gómez-Santillán Nelson Rangel-Valdez Héctor Fraire-Huacuja |
container_volume |
26 |
class |
T57-57.97 QA1-939 QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Teodoro Macias-Escobar |
doi_str_mv |
10.3390/mca26020035 |
author2-role |
verfasserin |
title_sort |
interactive recommendation system for decision making based on the characterization of cognitive tasks |
callnumber |
T57-57.97 |
title_auth |
An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks |
abstract |
The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users. |
abstractGer |
The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users. |
abstract_unstemmed |
The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 35 |
title_short |
An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks |
url |
https://doi.org/10.3390/mca26020035 https://doaj.org/article/05f6d5f6dc58418294fd4fb8d444164c https://www.mdpi.com/2297-8747/26/2/35 https://doaj.org/toc/1300-686X https://doaj.org/toc/2297-8747 |
remote_bool |
true |
author2 |
Laura Cruz-Reyes César Medina-Trejo Claudia Gómez-Santillán Nelson Rangel-Valdez Héctor Fraire-Huacuja |
author2Str |
Laura Cruz-Reyes César Medina-Trejo Claudia Gómez-Santillán Nelson Rangel-Valdez Héctor Fraire-Huacuja |
ppnlink |
877333904 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/mca26020035 |
callnumber-a |
T57-57.97 |
up_date |
2024-07-03T22:07:02.335Z |
_version_ |
1803597300195393536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014258056</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412183448.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mca26020035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014258056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ05f6d5f6dc58418294fd4fb8d444164c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57-57.97</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Teodoro Macias-Escobar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Interactive Recommendation System for Decision Making Based on the Characterization of Cognitive Tasks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The decision-making process can be complex and underestimated, where mismanagement could lead to poor results and excessive spending. This situation appears in highly complex multi-criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender system becomes crucial to guide the solution search process. To our knowledge, most recommender systems that use argumentation theory are not proposed for multi-criteria optimization problems. Besides, most of the current recommender systems focused on PPS problems do not attempt to justify their recommendations. This work studies the characterization of cognitive tasks involved in the decision-aiding process to propose a framework for the Decision Aid Interactive Recommender System (DAIRS). The proposed system focuses on a user-system interaction that guides the search towards the best solution considering a decision-maker’s preferences. The developed framework uses argumentation theory supported by argumentation schemes, dialogue games, proof standards, and two state transition diagrams (STD) to generate and explain its recommendations to the user. This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case simulations through a usability measurement. The prototype and both STDs received a satisfying score and mostly overall acceptance by the test users.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decision making process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive tasks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recommender system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">project portfolio selection problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">usability evaluation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied mathematics. Quantitative methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Cruz-Reyes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">César Medina-Trejo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Gómez-Santillán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nelson Rangel-Valdez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Héctor Fraire-Huacuja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical and Computational Applications</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">26(2021), 2, p 35</subfield><subfield code="w">(DE-627)877333904</subfield><subfield code="w">(DE-600)2880856-3</subfield><subfield code="x">22978747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 35</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mca26020035</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/05f6d5f6dc58418294fd4fb8d444164c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2297-8747/26/2/35</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1300-686X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2297-8747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 35</subfield></datafield></record></collection>
|
score |
7.403097 |