Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea
A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detectio...
Ausführliche Beschreibung
Autor*in: |
Jianmin Li [verfasserIn] Tingting Lan [verfasserIn] Guangqian Yang [verfasserIn] Shiyin Mu [verfasserIn] Kankan Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecotoxicology and Environmental Safety - Elsevier, 2021, 232(2022), Seite 113260- |
---|---|
Übergeordnetes Werk: |
volume:232 ; year:2022 ; pages:113260- |
Links: |
---|
DOI / URN: |
10.1016/j.ecoenv.2022.113260 |
---|
Katalog-ID: |
DOAJ014327376 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014327376 | ||
003 | DE-627 | ||
005 | 20230310064844.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecoenv.2022.113260 |2 doi | |
035 | |a (DE-627)DOAJ014327376 | ||
035 | |a (DE-599)DOAJc1287a6ba06e4001997de7949a889bdb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD172-193.5 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Jianmin Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables. | ||
650 | 4 | |a Mandipropamid | |
650 | 4 | |a Dissipation | |
650 | 4 | |a Residue | |
650 | 4 | |a Enantioselectivity | |
650 | 4 | |a Dietary intake risk | |
653 | 0 | |a Environmental pollution | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Tingting Lan |e verfasserin |4 aut | |
700 | 0 | |a Guangqian Yang |e verfasserin |4 aut | |
700 | 0 | |a Shiyin Mu |e verfasserin |4 aut | |
700 | 0 | |a Kankan Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecotoxicology and Environmental Safety |d Elsevier, 2021 |g 232(2022), Seite 113260- |w (DE-627)266018467 |w (DE-600)1466969-9 |x 10902414 |7 nnns |
773 | 1 | 8 | |g volume:232 |g year:2022 |g pages:113260- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecoenv.2022.113260 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c1287a6ba06e4001997de7949a889bdb |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0147651322001002 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0147-6513 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 232 |j 2022 |h 113260- |
author_variant |
j l jl t l tl g y gy s m sm k z kz |
---|---|
matchkey_str |
article:10902414:2022----::nnislcievlainfhciafniieadpoaidsiainitiuinnptnilitritkrs |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TD |
publishDate |
2022 |
allfields |
10.1016/j.ecoenv.2022.113260 doi (DE-627)DOAJ014327376 (DE-599)DOAJc1287a6ba06e4001997de7949a889bdb DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Jianmin Li verfasserin aut Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables. Mandipropamid Dissipation Residue Enantioselectivity Dietary intake risk Environmental pollution Environmental sciences Tingting Lan verfasserin aut Guangqian Yang verfasserin aut Shiyin Mu verfasserin aut Kankan Zhang verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 232(2022), Seite 113260- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:232 year:2022 pages:113260- https://doi.org/10.1016/j.ecoenv.2022.113260 kostenfrei https://doaj.org/article/c1287a6ba06e4001997de7949a889bdb kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651322001002 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 232 2022 113260- |
spelling |
10.1016/j.ecoenv.2022.113260 doi (DE-627)DOAJ014327376 (DE-599)DOAJc1287a6ba06e4001997de7949a889bdb DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Jianmin Li verfasserin aut Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables. Mandipropamid Dissipation Residue Enantioselectivity Dietary intake risk Environmental pollution Environmental sciences Tingting Lan verfasserin aut Guangqian Yang verfasserin aut Shiyin Mu verfasserin aut Kankan Zhang verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 232(2022), Seite 113260- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:232 year:2022 pages:113260- https://doi.org/10.1016/j.ecoenv.2022.113260 kostenfrei https://doaj.org/article/c1287a6ba06e4001997de7949a889bdb kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651322001002 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 232 2022 113260- |
allfields_unstemmed |
10.1016/j.ecoenv.2022.113260 doi (DE-627)DOAJ014327376 (DE-599)DOAJc1287a6ba06e4001997de7949a889bdb DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Jianmin Li verfasserin aut Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables. Mandipropamid Dissipation Residue Enantioselectivity Dietary intake risk Environmental pollution Environmental sciences Tingting Lan verfasserin aut Guangqian Yang verfasserin aut Shiyin Mu verfasserin aut Kankan Zhang verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 232(2022), Seite 113260- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:232 year:2022 pages:113260- https://doi.org/10.1016/j.ecoenv.2022.113260 kostenfrei https://doaj.org/article/c1287a6ba06e4001997de7949a889bdb kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651322001002 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 232 2022 113260- |
allfieldsGer |
10.1016/j.ecoenv.2022.113260 doi (DE-627)DOAJ014327376 (DE-599)DOAJc1287a6ba06e4001997de7949a889bdb DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Jianmin Li verfasserin aut Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables. Mandipropamid Dissipation Residue Enantioselectivity Dietary intake risk Environmental pollution Environmental sciences Tingting Lan verfasserin aut Guangqian Yang verfasserin aut Shiyin Mu verfasserin aut Kankan Zhang verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 232(2022), Seite 113260- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:232 year:2022 pages:113260- https://doi.org/10.1016/j.ecoenv.2022.113260 kostenfrei https://doaj.org/article/c1287a6ba06e4001997de7949a889bdb kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651322001002 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 232 2022 113260- |
allfieldsSound |
10.1016/j.ecoenv.2022.113260 doi (DE-627)DOAJ014327376 (DE-599)DOAJc1287a6ba06e4001997de7949a889bdb DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Jianmin Li verfasserin aut Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables. Mandipropamid Dissipation Residue Enantioselectivity Dietary intake risk Environmental pollution Environmental sciences Tingting Lan verfasserin aut Guangqian Yang verfasserin aut Shiyin Mu verfasserin aut Kankan Zhang verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 232(2022), Seite 113260- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:232 year:2022 pages:113260- https://doi.org/10.1016/j.ecoenv.2022.113260 kostenfrei https://doaj.org/article/c1287a6ba06e4001997de7949a889bdb kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651322001002 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 232 2022 113260- |
language |
English |
source |
In Ecotoxicology and Environmental Safety 232(2022), Seite 113260- volume:232 year:2022 pages:113260- |
sourceStr |
In Ecotoxicology and Environmental Safety 232(2022), Seite 113260- volume:232 year:2022 pages:113260- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mandipropamid Dissipation Residue Enantioselectivity Dietary intake risk Environmental pollution Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Ecotoxicology and Environmental Safety |
authorswithroles_txt_mv |
Jianmin Li @@aut@@ Tingting Lan @@aut@@ Guangqian Yang @@aut@@ Shiyin Mu @@aut@@ Kankan Zhang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
266018467 |
id |
DOAJ014327376 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014327376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310064844.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2022.113260</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014327376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc1287a6ba06e4001997de7949a889bdb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD172-193.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianmin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mandipropamid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dissipation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enantioselectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dietary intake risk</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental pollution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tingting Lan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangqian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyin Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kankan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecotoxicology and Environmental Safety</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">232(2022), Seite 113260-</subfield><subfield code="w">(DE-627)266018467</subfield><subfield code="w">(DE-600)1466969-9</subfield><subfield code="x">10902414</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:232</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:113260-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2022.113260</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c1287a6ba06e4001997de7949a889bdb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0147651322001002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0147-6513</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">232</subfield><subfield code="j">2022</subfield><subfield code="h">113260-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jianmin Li |
spellingShingle |
Jianmin Li misc TD172-193.5 misc GE1-350 misc Mandipropamid misc Dissipation misc Residue misc Enantioselectivity misc Dietary intake risk misc Environmental pollution misc Environmental sciences Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea |
authorStr |
Jianmin Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266018467 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD172-193 |
illustrated |
Not Illustrated |
issn |
10902414 |
topic_title |
TD172-193.5 GE1-350 Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea Mandipropamid Dissipation Residue Enantioselectivity Dietary intake risk |
topic |
misc TD172-193.5 misc GE1-350 misc Mandipropamid misc Dissipation misc Residue misc Enantioselectivity misc Dietary intake risk misc Environmental pollution misc Environmental sciences |
topic_unstemmed |
misc TD172-193.5 misc GE1-350 misc Mandipropamid misc Dissipation misc Residue misc Enantioselectivity misc Dietary intake risk misc Environmental pollution misc Environmental sciences |
topic_browse |
misc TD172-193.5 misc GE1-350 misc Mandipropamid misc Dissipation misc Residue misc Enantioselectivity misc Dietary intake risk misc Environmental pollution misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecotoxicology and Environmental Safety |
hierarchy_parent_id |
266018467 |
hierarchy_top_title |
Ecotoxicology and Environmental Safety |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)266018467 (DE-600)1466969-9 |
title |
Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea |
ctrlnum |
(DE-627)DOAJ014327376 (DE-599)DOAJc1287a6ba06e4001997de7949a889bdb |
title_full |
Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea |
author_sort |
Jianmin Li |
journal |
Ecotoxicology and Environmental Safety |
journalStr |
Ecotoxicology and Environmental Safety |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
113260 |
author_browse |
Jianmin Li Tingting Lan Guangqian Yang Shiyin Mu Kankan Zhang |
container_volume |
232 |
class |
TD172-193.5 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianmin Li |
doi_str_mv |
10.1016/j.ecoenv.2022.113260 |
author2-role |
verfasserin |
title_sort |
enantioselective evaluation of the chiral fungicide mandipropamid: dissipation, distribution and potential dietary intake risk in tomato, cucumber, chinese cabbage and cowpea |
callnumber |
TD172-193.5 |
title_auth |
Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea |
abstract |
A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables. |
abstractGer |
A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables. |
abstract_unstemmed |
A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea |
url |
https://doi.org/10.1016/j.ecoenv.2022.113260 https://doaj.org/article/c1287a6ba06e4001997de7949a889bdb http://www.sciencedirect.com/science/article/pii/S0147651322001002 https://doaj.org/toc/0147-6513 |
remote_bool |
true |
author2 |
Tingting Lan Guangqian Yang Shiyin Mu Kankan Zhang |
author2Str |
Tingting Lan Guangqian Yang Shiyin Mu Kankan Zhang |
ppnlink |
266018467 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecoenv.2022.113260 |
callnumber-a |
TD172-193.5 |
up_date |
2024-07-03T22:28:05.251Z |
_version_ |
1803598624466141184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014327376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310064844.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2022.113260</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014327376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc1287a6ba06e4001997de7949a889bdb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD172-193.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianmin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A chiral analytical method was developed and validated for the determination of mandipropamid enantiomers in tomato, cucumber, Chinese cabbage and cowpea. The linearity (R2 < 0.99), accuracy (recovery: 73.8–106%) and precision (relative standard deviation: < 11%) were adequate for the detection of mandipropamid enantiomers in four vegetables. Field trials were further conducted to investigate the dissipation and residue distribution of mandipropamid and the possible enantioselectivity in different vegetables. Due to the shorter half-lives, mandipropamid dissipated more rapidly in Chinese cabbage (1.8–2.0 d) and cowpea (1.6–2.4 d) than in tomato (5.0–8.4 d) and cucumber (2.4–5.5 d). The residues of mandipropamid were 45–179 µg/kg in tomato 14 d at low dose, 48–98 µg/kg in cucumber 7 d after spraying twice at low dose, and < 2.5–1942 µg/kg in Chinese cabbage and cowpea in all treatments, which were below the maximum residue limits of mandipropamid set by the European Union and Codex Alimentarius Commission. Enantioselectivity was observed during the mandipropamid dissipation process in four vegetables. The S-(+)-enantiomer dissipated more rapidly than the R-(−)-enantiomer in tomato and Chinese cabbage (enantiomeric fractions < 0.5). For cucumber and cowpea, the dissipation of the R-enantiomer was preferential (enantiomeric fractions < 0.5). According to the risk quotient data (<< 100%), the residues of mandipropamid in four vegetables were safe for Chinese consumers. This study could provide useful information for the dissipation fate and residue distribution of mandipropamid in vegetables at the enantiomer level and offer some guidance for the dietary intake risk evaluation of mandipropamid in vegetables.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mandipropamid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dissipation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enantioselectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dietary intake risk</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental pollution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tingting Lan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangqian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyin Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kankan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecotoxicology and Environmental Safety</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">232(2022), Seite 113260-</subfield><subfield code="w">(DE-627)266018467</subfield><subfield code="w">(DE-600)1466969-9</subfield><subfield code="x">10902414</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:232</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:113260-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2022.113260</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c1287a6ba06e4001997de7949a889bdb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0147651322001002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0147-6513</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">232</subfield><subfield code="j">2022</subfield><subfield code="h">113260-</subfield></datafield></record></collection>
|
score |
7.4011307 |