Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments
Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing para...
Ausführliche Beschreibung
Autor*in: |
Haijun Huang [verfasserIn] Ling Qin [verfasserIn] Haibin Tang [verfasserIn] Da Shu [verfasserIn] Wentao Yan [verfasserIn] Baode Sun [verfasserIn] Jiawei Mi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ultrasonics Sonochemistry - Elsevier, 2021, 80(2021), Seite 105832- |
---|---|
Übergeordnetes Werk: |
volume:80 ; year:2021 ; pages:105832- |
Links: |
---|
DOI / URN: |
10.1016/j.ultsonch.2021.105832 |
---|
Katalog-ID: |
DOAJ014482967 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014482967 | ||
003 | DE-627 | ||
005 | 20230310065225.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ultsonch.2021.105832 |2 doi | |
035 | |a (DE-627)DOAJ014482967 | ||
035 | |a (DE-599)DOAJe2029373ee0b4493bd7a6a4689334d4f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
050 | 0 | |a QC221-246 | |
100 | 0 | |a Haijun Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound. | ||
650 | 4 | |a Modelling | |
650 | 4 | |a Ultrasound melt processing | |
650 | 4 | |a Ultrasound Cavitation | |
650 | 4 | |a Nucleation of metal alloys | |
650 | 4 | |a Ultrafast synchrotron X-ray imaging and tomography | |
653 | 0 | |a Chemistry | |
653 | 0 | |a Acoustics. Sound | |
700 | 0 | |a Ling Qin |e verfasserin |4 aut | |
700 | 0 | |a Haibin Tang |e verfasserin |4 aut | |
700 | 0 | |a Da Shu |e verfasserin |4 aut | |
700 | 0 | |a Wentao Yan |e verfasserin |4 aut | |
700 | 0 | |a Baode Sun |e verfasserin |4 aut | |
700 | 0 | |a Jiawei Mi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ultrasonics Sonochemistry |d Elsevier, 2021 |g 80(2021), Seite 105832- |w (DE-627)306713748 |w (DE-600)1501094-6 |x 18732828 |7 nnns |
773 | 1 | 8 | |g volume:80 |g year:2021 |g pages:105832- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ultsonch.2021.105832 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e2029373ee0b4493bd7a6a4689334d4f |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1350417721003746 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1350-4177 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 80 |j 2021 |h 105832- |
author_variant |
h h hh l q lq h t ht d s ds w y wy b s bs j m jm |
---|---|
matchkey_str |
article:18732828:2021----::lrsudaiainnuencetoimtloiiiainnnltcloeada |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QD |
publishDate |
2021 |
allfields |
10.1016/j.ultsonch.2021.105832 doi (DE-627)DOAJ014482967 (DE-599)DOAJe2029373ee0b4493bd7a6a4689334d4f DE-627 ger DE-627 rakwb eng QD1-999 QC221-246 Haijun Huang verfasserin aut Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound. Modelling Ultrasound melt processing Ultrasound Cavitation Nucleation of metal alloys Ultrafast synchrotron X-ray imaging and tomography Chemistry Acoustics. Sound Ling Qin verfasserin aut Haibin Tang verfasserin aut Da Shu verfasserin aut Wentao Yan verfasserin aut Baode Sun verfasserin aut Jiawei Mi verfasserin aut In Ultrasonics Sonochemistry Elsevier, 2021 80(2021), Seite 105832- (DE-627)306713748 (DE-600)1501094-6 18732828 nnns volume:80 year:2021 pages:105832- https://doi.org/10.1016/j.ultsonch.2021.105832 kostenfrei https://doaj.org/article/e2029373ee0b4493bd7a6a4689334d4f kostenfrei http://www.sciencedirect.com/science/article/pii/S1350417721003746 kostenfrei https://doaj.org/toc/1350-4177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2021 105832- |
spelling |
10.1016/j.ultsonch.2021.105832 doi (DE-627)DOAJ014482967 (DE-599)DOAJe2029373ee0b4493bd7a6a4689334d4f DE-627 ger DE-627 rakwb eng QD1-999 QC221-246 Haijun Huang verfasserin aut Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound. Modelling Ultrasound melt processing Ultrasound Cavitation Nucleation of metal alloys Ultrafast synchrotron X-ray imaging and tomography Chemistry Acoustics. Sound Ling Qin verfasserin aut Haibin Tang verfasserin aut Da Shu verfasserin aut Wentao Yan verfasserin aut Baode Sun verfasserin aut Jiawei Mi verfasserin aut In Ultrasonics Sonochemistry Elsevier, 2021 80(2021), Seite 105832- (DE-627)306713748 (DE-600)1501094-6 18732828 nnns volume:80 year:2021 pages:105832- https://doi.org/10.1016/j.ultsonch.2021.105832 kostenfrei https://doaj.org/article/e2029373ee0b4493bd7a6a4689334d4f kostenfrei http://www.sciencedirect.com/science/article/pii/S1350417721003746 kostenfrei https://doaj.org/toc/1350-4177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2021 105832- |
allfields_unstemmed |
10.1016/j.ultsonch.2021.105832 doi (DE-627)DOAJ014482967 (DE-599)DOAJe2029373ee0b4493bd7a6a4689334d4f DE-627 ger DE-627 rakwb eng QD1-999 QC221-246 Haijun Huang verfasserin aut Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound. Modelling Ultrasound melt processing Ultrasound Cavitation Nucleation of metal alloys Ultrafast synchrotron X-ray imaging and tomography Chemistry Acoustics. Sound Ling Qin verfasserin aut Haibin Tang verfasserin aut Da Shu verfasserin aut Wentao Yan verfasserin aut Baode Sun verfasserin aut Jiawei Mi verfasserin aut In Ultrasonics Sonochemistry Elsevier, 2021 80(2021), Seite 105832- (DE-627)306713748 (DE-600)1501094-6 18732828 nnns volume:80 year:2021 pages:105832- https://doi.org/10.1016/j.ultsonch.2021.105832 kostenfrei https://doaj.org/article/e2029373ee0b4493bd7a6a4689334d4f kostenfrei http://www.sciencedirect.com/science/article/pii/S1350417721003746 kostenfrei https://doaj.org/toc/1350-4177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2021 105832- |
allfieldsGer |
10.1016/j.ultsonch.2021.105832 doi (DE-627)DOAJ014482967 (DE-599)DOAJe2029373ee0b4493bd7a6a4689334d4f DE-627 ger DE-627 rakwb eng QD1-999 QC221-246 Haijun Huang verfasserin aut Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound. Modelling Ultrasound melt processing Ultrasound Cavitation Nucleation of metal alloys Ultrafast synchrotron X-ray imaging and tomography Chemistry Acoustics. Sound Ling Qin verfasserin aut Haibin Tang verfasserin aut Da Shu verfasserin aut Wentao Yan verfasserin aut Baode Sun verfasserin aut Jiawei Mi verfasserin aut In Ultrasonics Sonochemistry Elsevier, 2021 80(2021), Seite 105832- (DE-627)306713748 (DE-600)1501094-6 18732828 nnns volume:80 year:2021 pages:105832- https://doi.org/10.1016/j.ultsonch.2021.105832 kostenfrei https://doaj.org/article/e2029373ee0b4493bd7a6a4689334d4f kostenfrei http://www.sciencedirect.com/science/article/pii/S1350417721003746 kostenfrei https://doaj.org/toc/1350-4177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2021 105832- |
allfieldsSound |
10.1016/j.ultsonch.2021.105832 doi (DE-627)DOAJ014482967 (DE-599)DOAJe2029373ee0b4493bd7a6a4689334d4f DE-627 ger DE-627 rakwb eng QD1-999 QC221-246 Haijun Huang verfasserin aut Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound. Modelling Ultrasound melt processing Ultrasound Cavitation Nucleation of metal alloys Ultrafast synchrotron X-ray imaging and tomography Chemistry Acoustics. Sound Ling Qin verfasserin aut Haibin Tang verfasserin aut Da Shu verfasserin aut Wentao Yan verfasserin aut Baode Sun verfasserin aut Jiawei Mi verfasserin aut In Ultrasonics Sonochemistry Elsevier, 2021 80(2021), Seite 105832- (DE-627)306713748 (DE-600)1501094-6 18732828 nnns volume:80 year:2021 pages:105832- https://doi.org/10.1016/j.ultsonch.2021.105832 kostenfrei https://doaj.org/article/e2029373ee0b4493bd7a6a4689334d4f kostenfrei http://www.sciencedirect.com/science/article/pii/S1350417721003746 kostenfrei https://doaj.org/toc/1350-4177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2021 105832- |
language |
English |
source |
In Ultrasonics Sonochemistry 80(2021), Seite 105832- volume:80 year:2021 pages:105832- |
sourceStr |
In Ultrasonics Sonochemistry 80(2021), Seite 105832- volume:80 year:2021 pages:105832- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Modelling Ultrasound melt processing Ultrasound Cavitation Nucleation of metal alloys Ultrafast synchrotron X-ray imaging and tomography Chemistry Acoustics. Sound |
isfreeaccess_bool |
true |
container_title |
Ultrasonics Sonochemistry |
authorswithroles_txt_mv |
Haijun Huang @@aut@@ Ling Qin @@aut@@ Haibin Tang @@aut@@ Da Shu @@aut@@ Wentao Yan @@aut@@ Baode Sun @@aut@@ Jiawei Mi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
306713748 |
id |
DOAJ014482967 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014482967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310065225.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ultsonch.2021.105832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014482967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe2029373ee0b4493bd7a6a4689334d4f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC221-246</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haijun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasound melt processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasound Cavitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nucleation of metal alloys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrafast synchrotron X-ray imaging and tomography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Acoustics. Sound</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibin Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Da Shu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wentao Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baode Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Mi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ultrasonics Sonochemistry</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">80(2021), Seite 105832-</subfield><subfield code="w">(DE-627)306713748</subfield><subfield code="w">(DE-600)1501094-6</subfield><subfield code="x">18732828</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:105832-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ultsonch.2021.105832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e2029373ee0b4493bd7a6a4689334d4f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1350417721003746</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1350-4177</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2021</subfield><subfield code="h">105832-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Haijun Huang |
spellingShingle |
Haijun Huang misc QD1-999 misc QC221-246 misc Modelling misc Ultrasound melt processing misc Ultrasound Cavitation misc Nucleation of metal alloys misc Ultrafast synchrotron X-ray imaging and tomography misc Chemistry misc Acoustics. Sound Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments |
authorStr |
Haijun Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306713748 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
18732828 |
topic_title |
QD1-999 QC221-246 Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments Modelling Ultrasound melt processing Ultrasound Cavitation Nucleation of metal alloys Ultrafast synchrotron X-ray imaging and tomography |
topic |
misc QD1-999 misc QC221-246 misc Modelling misc Ultrasound melt processing misc Ultrasound Cavitation misc Nucleation of metal alloys misc Ultrafast synchrotron X-ray imaging and tomography misc Chemistry misc Acoustics. Sound |
topic_unstemmed |
misc QD1-999 misc QC221-246 misc Modelling misc Ultrasound melt processing misc Ultrasound Cavitation misc Nucleation of metal alloys misc Ultrafast synchrotron X-ray imaging and tomography misc Chemistry misc Acoustics. Sound |
topic_browse |
misc QD1-999 misc QC221-246 misc Modelling misc Ultrasound melt processing misc Ultrasound Cavitation misc Nucleation of metal alloys misc Ultrafast synchrotron X-ray imaging and tomography misc Chemistry misc Acoustics. Sound |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ultrasonics Sonochemistry |
hierarchy_parent_id |
306713748 |
hierarchy_top_title |
Ultrasonics Sonochemistry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)306713748 (DE-600)1501094-6 |
title |
Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments |
ctrlnum |
(DE-627)DOAJ014482967 (DE-599)DOAJe2029373ee0b4493bd7a6a4689334d4f |
title_full |
Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments |
author_sort |
Haijun Huang |
journal |
Ultrasonics Sonochemistry |
journalStr |
Ultrasonics Sonochemistry |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
105832 |
author_browse |
Haijun Huang Ling Qin Haibin Tang Da Shu Wentao Yan Baode Sun Jiawei Mi |
container_volume |
80 |
class |
QD1-999 QC221-246 |
format_se |
Elektronische Aufsätze |
author-letter |
Haijun Huang |
doi_str_mv |
10.1016/j.ultsonch.2021.105832 |
author2-role |
verfasserin |
title_sort |
ultrasound cavitation induced nucleation in metal solidification: an analytical model and validation by real-time experiments |
callnumber |
QD1-999 |
title_auth |
Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments |
abstract |
Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound. |
abstractGer |
Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound. |
abstract_unstemmed |
Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments |
url |
https://doi.org/10.1016/j.ultsonch.2021.105832 https://doaj.org/article/e2029373ee0b4493bd7a6a4689334d4f http://www.sciencedirect.com/science/article/pii/S1350417721003746 https://doaj.org/toc/1350-4177 |
remote_bool |
true |
author2 |
Ling Qin Haibin Tang Da Shu Wentao Yan Baode Sun Jiawei Mi |
author2Str |
Ling Qin Haibin Tang Da Shu Wentao Yan Baode Sun Jiawei Mi |
ppnlink |
306713748 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ultsonch.2021.105832 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T23:14:10.295Z |
_version_ |
1803601523816529920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014482967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310065225.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ultsonch.2021.105832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014482967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe2029373ee0b4493bd7a6a4689334d4f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC221-246</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haijun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasound melt processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasound Cavitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nucleation of metal alloys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrafast synchrotron X-ray imaging and tomography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Acoustics. Sound</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibin Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Da Shu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wentao Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baode Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Mi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ultrasonics Sonochemistry</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">80(2021), Seite 105832-</subfield><subfield code="w">(DE-627)306713748</subfield><subfield code="w">(DE-600)1501094-6</subfield><subfield code="x">18732828</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:105832-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ultsonch.2021.105832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e2029373ee0b4493bd7a6a4689334d4f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1350417721003746</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1350-4177</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2021</subfield><subfield code="h">105832-</subfield></datafield></record></collection>
|
score |
7.4016123 |