A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System
The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency...
Ausführliche Beschreibung
Autor*in: |
Qisong Wu [verfasserIn] Zengyang Mei [verfasserIn] Zhichao Lai [verfasserIn] Dianze Li [verfasserIn] Dixian Zhao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Non-contact vital signs detection |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 49614-49628 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:49614-49628 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3068480 |
---|
Katalog-ID: |
DOAJ014566184 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014566184 | ||
003 | DE-627 | ||
005 | 20230310065701.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3068480 |2 doi | |
035 | |a (DE-627)DOAJ014566184 | ||
035 | |a (DE-599)DOAJ182276b8d9bc4722b130478e8dadfc6f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Qisong Wu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment. | ||
650 | 4 | |a Non-contact vital signs detection | |
650 | 4 | |a linear-frequency-modulated continuous-wave (LFMCW) radar | |
650 | 4 | |a random body movement (RBM) | |
650 | 4 | |a multi-channel Kalman smoother | |
650 | 4 | |a hidden Markov model | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Zengyang Mei |e verfasserin |4 aut | |
700 | 0 | |a Zhichao Lai |e verfasserin |4 aut | |
700 | 0 | |a Dianze Li |e verfasserin |4 aut | |
700 | 0 | |a Dixian Zhao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 49614-49628 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:49614-49628 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3068480 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/182276b8d9bc4722b130478e8dadfc6f |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9385137/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 49614-49628 |
author_variant |
q w qw z m zm z l zl d l dl d z dz |
---|---|
matchkey_str |
article:21693536:2021----::nnotcvtlindtcinnmlihne7g |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3068480 doi (DE-627)DOAJ014566184 (DE-599)DOAJ182276b8d9bc4722b130478e8dadfc6f DE-627 ger DE-627 rakwb eng TK1-9971 Qisong Wu verfasserin aut A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment. Non-contact vital signs detection linear-frequency-modulated continuous-wave (LFMCW) radar random body movement (RBM) multi-channel Kalman smoother hidden Markov model Electrical engineering. Electronics. Nuclear engineering Zengyang Mei verfasserin aut Zhichao Lai verfasserin aut Dianze Li verfasserin aut Dixian Zhao verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 49614-49628 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:49614-49628 https://doi.org/10.1109/ACCESS.2021.3068480 kostenfrei https://doaj.org/article/182276b8d9bc4722b130478e8dadfc6f kostenfrei https://ieeexplore.ieee.org/document/9385137/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 49614-49628 |
spelling |
10.1109/ACCESS.2021.3068480 doi (DE-627)DOAJ014566184 (DE-599)DOAJ182276b8d9bc4722b130478e8dadfc6f DE-627 ger DE-627 rakwb eng TK1-9971 Qisong Wu verfasserin aut A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment. Non-contact vital signs detection linear-frequency-modulated continuous-wave (LFMCW) radar random body movement (RBM) multi-channel Kalman smoother hidden Markov model Electrical engineering. Electronics. Nuclear engineering Zengyang Mei verfasserin aut Zhichao Lai verfasserin aut Dianze Li verfasserin aut Dixian Zhao verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 49614-49628 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:49614-49628 https://doi.org/10.1109/ACCESS.2021.3068480 kostenfrei https://doaj.org/article/182276b8d9bc4722b130478e8dadfc6f kostenfrei https://ieeexplore.ieee.org/document/9385137/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 49614-49628 |
allfields_unstemmed |
10.1109/ACCESS.2021.3068480 doi (DE-627)DOAJ014566184 (DE-599)DOAJ182276b8d9bc4722b130478e8dadfc6f DE-627 ger DE-627 rakwb eng TK1-9971 Qisong Wu verfasserin aut A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment. Non-contact vital signs detection linear-frequency-modulated continuous-wave (LFMCW) radar random body movement (RBM) multi-channel Kalman smoother hidden Markov model Electrical engineering. Electronics. Nuclear engineering Zengyang Mei verfasserin aut Zhichao Lai verfasserin aut Dianze Li verfasserin aut Dixian Zhao verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 49614-49628 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:49614-49628 https://doi.org/10.1109/ACCESS.2021.3068480 kostenfrei https://doaj.org/article/182276b8d9bc4722b130478e8dadfc6f kostenfrei https://ieeexplore.ieee.org/document/9385137/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 49614-49628 |
allfieldsGer |
10.1109/ACCESS.2021.3068480 doi (DE-627)DOAJ014566184 (DE-599)DOAJ182276b8d9bc4722b130478e8dadfc6f DE-627 ger DE-627 rakwb eng TK1-9971 Qisong Wu verfasserin aut A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment. Non-contact vital signs detection linear-frequency-modulated continuous-wave (LFMCW) radar random body movement (RBM) multi-channel Kalman smoother hidden Markov model Electrical engineering. Electronics. Nuclear engineering Zengyang Mei verfasserin aut Zhichao Lai verfasserin aut Dianze Li verfasserin aut Dixian Zhao verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 49614-49628 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:49614-49628 https://doi.org/10.1109/ACCESS.2021.3068480 kostenfrei https://doaj.org/article/182276b8d9bc4722b130478e8dadfc6f kostenfrei https://ieeexplore.ieee.org/document/9385137/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 49614-49628 |
allfieldsSound |
10.1109/ACCESS.2021.3068480 doi (DE-627)DOAJ014566184 (DE-599)DOAJ182276b8d9bc4722b130478e8dadfc6f DE-627 ger DE-627 rakwb eng TK1-9971 Qisong Wu verfasserin aut A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment. Non-contact vital signs detection linear-frequency-modulated continuous-wave (LFMCW) radar random body movement (RBM) multi-channel Kalman smoother hidden Markov model Electrical engineering. Electronics. Nuclear engineering Zengyang Mei verfasserin aut Zhichao Lai verfasserin aut Dianze Li verfasserin aut Dixian Zhao verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 49614-49628 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:49614-49628 https://doi.org/10.1109/ACCESS.2021.3068480 kostenfrei https://doaj.org/article/182276b8d9bc4722b130478e8dadfc6f kostenfrei https://ieeexplore.ieee.org/document/9385137/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 49614-49628 |
language |
English |
source |
In IEEE Access 9(2021), Seite 49614-49628 volume:9 year:2021 pages:49614-49628 |
sourceStr |
In IEEE Access 9(2021), Seite 49614-49628 volume:9 year:2021 pages:49614-49628 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Non-contact vital signs detection linear-frequency-modulated continuous-wave (LFMCW) radar random body movement (RBM) multi-channel Kalman smoother hidden Markov model Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Qisong Wu @@aut@@ Zengyang Mei @@aut@@ Zhichao Lai @@aut@@ Dianze Li @@aut@@ Dixian Zhao @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ014566184 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014566184</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310065701.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3068480</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014566184</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ182276b8d9bc4722b130478e8dadfc6f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qisong Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-contact vital signs detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear-frequency-modulated continuous-wave (LFMCW) radar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random body movement (RBM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-channel Kalman smoother</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hidden Markov model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zengyang Mei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhichao Lai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dianze Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dixian Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 49614-49628</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:49614-49628</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3068480</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/182276b8d9bc4722b130478e8dadfc6f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9385137/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">49614-49628</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Qisong Wu |
spellingShingle |
Qisong Wu misc TK1-9971 misc Non-contact vital signs detection misc linear-frequency-modulated continuous-wave (LFMCW) radar misc random body movement (RBM) misc multi-channel Kalman smoother misc hidden Markov model misc Electrical engineering. Electronics. Nuclear engineering A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System |
authorStr |
Qisong Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System Non-contact vital signs detection linear-frequency-modulated continuous-wave (LFMCW) radar random body movement (RBM) multi-channel Kalman smoother hidden Markov model |
topic |
misc TK1-9971 misc Non-contact vital signs detection misc linear-frequency-modulated continuous-wave (LFMCW) radar misc random body movement (RBM) misc multi-channel Kalman smoother misc hidden Markov model misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Non-contact vital signs detection misc linear-frequency-modulated continuous-wave (LFMCW) radar misc random body movement (RBM) misc multi-channel Kalman smoother misc hidden Markov model misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Non-contact vital signs detection misc linear-frequency-modulated continuous-wave (LFMCW) radar misc random body movement (RBM) misc multi-channel Kalman smoother misc hidden Markov model misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System |
ctrlnum |
(DE-627)DOAJ014566184 (DE-599)DOAJ182276b8d9bc4722b130478e8dadfc6f |
title_full |
A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System |
author_sort |
Qisong Wu |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
49614 |
author_browse |
Qisong Wu Zengyang Mei Zhichao Lai Dianze Li Dixian Zhao |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Qisong Wu |
doi_str_mv |
10.1109/ACCESS.2021.3068480 |
author2-role |
verfasserin |
title_sort |
non-contact vital signs detection in a multi-channel 77ghz lfmcw radar system |
callnumber |
TK1-9971 |
title_auth |
A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System |
abstract |
The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment. |
abstractGer |
The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment. |
abstract_unstemmed |
The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System |
url |
https://doi.org/10.1109/ACCESS.2021.3068480 https://doaj.org/article/182276b8d9bc4722b130478e8dadfc6f https://ieeexplore.ieee.org/document/9385137/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Zengyang Mei Zhichao Lai Dianze Li Dixian Zhao |
author2Str |
Zengyang Mei Zhichao Lai Dianze Li Dixian Zhao |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3068480 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T23:36:42.920Z |
_version_ |
1803602942147690496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014566184</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310065701.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3068480</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014566184</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ182276b8d9bc4722b130478e8dadfc6f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qisong Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The technology of vital signs detection has been proven of great use, whereas it is still limited by several challenges. One of the major challenges is the random body movements (RBMs), which significantly degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates of the RR and HR. Furthermore, a novel regional hidden Markov model is then proposed to carry out accurate estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with young men in the RBMs environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-contact vital signs detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear-frequency-modulated continuous-wave (LFMCW) radar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random body movement (RBM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-channel Kalman smoother</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hidden Markov model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zengyang Mei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhichao Lai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dianze Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dixian Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 49614-49628</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:49614-49628</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3068480</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/182276b8d9bc4722b130478e8dadfc6f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9385137/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">49614-49628</subfield></datafield></record></collection>
|
score |
7.399888 |