Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton
Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluoresc...
Ausführliche Beschreibung
Autor*in: |
Bo Xiong [verfasserIn] Tianqi Hong [verfasserIn] Herbert Schellhorn [verfasserIn] Qiyin Fang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Photonics - MDPI AG, 2014, 8(2021), 10, p 435 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2021 ; number:10, p 435 |
Links: |
---|
DOI / URN: |
10.3390/photonics8100435 |
---|
Katalog-ID: |
DOAJ014672286 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014672286 | ||
003 | DE-627 | ||
005 | 20240412134622.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/photonics8100435 |2 doi | |
035 | |a (DE-627)DOAJ014672286 | ||
035 | |a (DE-599)DOAJb8b1d02914544438b48432d9ffd6a5cd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1501-1820 | |
100 | 0 | |a Bo Xiong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring. | ||
650 | 4 | |a flow cytometry | |
650 | 4 | |a phytoplankton | |
650 | 4 | |a lensless imaging | |
650 | 4 | |a fluorescence imaging | |
650 | 4 | |a miniaturization | |
650 | 4 | |a microfluidic | |
653 | 0 | |a Applied optics. Photonics | |
700 | 0 | |a Tianqi Hong |e verfasserin |4 aut | |
700 | 0 | |a Herbert Schellhorn |e verfasserin |4 aut | |
700 | 0 | |a Qiyin Fang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Photonics |d MDPI AG, 2014 |g 8(2021), 10, p 435 |w (DE-627)786192763 |w (DE-600)2770002-1 |x 23046732 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2021 |g number:10, p 435 |
856 | 4 | 0 | |u https://doi.org/10.3390/photonics8100435 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b8b1d02914544438b48432d9ffd6a5cd |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2304-6732/8/10/435 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2304-6732 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2021 |e 10, p 435 |
author_variant |
b x bx t h th h s hs q f qf |
---|---|
matchkey_str |
article:23046732:2021----::uloaiymgnmcoliictmtroostdtc |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.3390/photonics8100435 doi (DE-627)DOAJ014672286 (DE-599)DOAJb8b1d02914544438b48432d9ffd6a5cd DE-627 ger DE-627 rakwb eng TA1501-1820 Bo Xiong verfasserin aut Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring. flow cytometry phytoplankton lensless imaging fluorescence imaging miniaturization microfluidic Applied optics. Photonics Tianqi Hong verfasserin aut Herbert Schellhorn verfasserin aut Qiyin Fang verfasserin aut In Photonics MDPI AG, 2014 8(2021), 10, p 435 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:8 year:2021 number:10, p 435 https://doi.org/10.3390/photonics8100435 kostenfrei https://doaj.org/article/b8b1d02914544438b48432d9ffd6a5cd kostenfrei https://www.mdpi.com/2304-6732/8/10/435 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 10, p 435 |
spelling |
10.3390/photonics8100435 doi (DE-627)DOAJ014672286 (DE-599)DOAJb8b1d02914544438b48432d9ffd6a5cd DE-627 ger DE-627 rakwb eng TA1501-1820 Bo Xiong verfasserin aut Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring. flow cytometry phytoplankton lensless imaging fluorescence imaging miniaturization microfluidic Applied optics. Photonics Tianqi Hong verfasserin aut Herbert Schellhorn verfasserin aut Qiyin Fang verfasserin aut In Photonics MDPI AG, 2014 8(2021), 10, p 435 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:8 year:2021 number:10, p 435 https://doi.org/10.3390/photonics8100435 kostenfrei https://doaj.org/article/b8b1d02914544438b48432d9ffd6a5cd kostenfrei https://www.mdpi.com/2304-6732/8/10/435 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 10, p 435 |
allfields_unstemmed |
10.3390/photonics8100435 doi (DE-627)DOAJ014672286 (DE-599)DOAJb8b1d02914544438b48432d9ffd6a5cd DE-627 ger DE-627 rakwb eng TA1501-1820 Bo Xiong verfasserin aut Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring. flow cytometry phytoplankton lensless imaging fluorescence imaging miniaturization microfluidic Applied optics. Photonics Tianqi Hong verfasserin aut Herbert Schellhorn verfasserin aut Qiyin Fang verfasserin aut In Photonics MDPI AG, 2014 8(2021), 10, p 435 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:8 year:2021 number:10, p 435 https://doi.org/10.3390/photonics8100435 kostenfrei https://doaj.org/article/b8b1d02914544438b48432d9ffd6a5cd kostenfrei https://www.mdpi.com/2304-6732/8/10/435 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 10, p 435 |
allfieldsGer |
10.3390/photonics8100435 doi (DE-627)DOAJ014672286 (DE-599)DOAJb8b1d02914544438b48432d9ffd6a5cd DE-627 ger DE-627 rakwb eng TA1501-1820 Bo Xiong verfasserin aut Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring. flow cytometry phytoplankton lensless imaging fluorescence imaging miniaturization microfluidic Applied optics. Photonics Tianqi Hong verfasserin aut Herbert Schellhorn verfasserin aut Qiyin Fang verfasserin aut In Photonics MDPI AG, 2014 8(2021), 10, p 435 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:8 year:2021 number:10, p 435 https://doi.org/10.3390/photonics8100435 kostenfrei https://doaj.org/article/b8b1d02914544438b48432d9ffd6a5cd kostenfrei https://www.mdpi.com/2304-6732/8/10/435 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 10, p 435 |
allfieldsSound |
10.3390/photonics8100435 doi (DE-627)DOAJ014672286 (DE-599)DOAJb8b1d02914544438b48432d9ffd6a5cd DE-627 ger DE-627 rakwb eng TA1501-1820 Bo Xiong verfasserin aut Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring. flow cytometry phytoplankton lensless imaging fluorescence imaging miniaturization microfluidic Applied optics. Photonics Tianqi Hong verfasserin aut Herbert Schellhorn verfasserin aut Qiyin Fang verfasserin aut In Photonics MDPI AG, 2014 8(2021), 10, p 435 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:8 year:2021 number:10, p 435 https://doi.org/10.3390/photonics8100435 kostenfrei https://doaj.org/article/b8b1d02914544438b48432d9ffd6a5cd kostenfrei https://www.mdpi.com/2304-6732/8/10/435 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 10, p 435 |
language |
English |
source |
In Photonics 8(2021), 10, p 435 volume:8 year:2021 number:10, p 435 |
sourceStr |
In Photonics 8(2021), 10, p 435 volume:8 year:2021 number:10, p 435 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
flow cytometry phytoplankton lensless imaging fluorescence imaging miniaturization microfluidic Applied optics. Photonics |
isfreeaccess_bool |
true |
container_title |
Photonics |
authorswithroles_txt_mv |
Bo Xiong @@aut@@ Tianqi Hong @@aut@@ Herbert Schellhorn @@aut@@ Qiyin Fang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
786192763 |
id |
DOAJ014672286 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014672286</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412134622.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/photonics8100435</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014672286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb8b1d02914544438b48432d9ffd6a5cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bo Xiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow cytometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phytoplankton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lensless imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fluorescence imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">miniaturization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfluidic</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianqi Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Herbert Schellhorn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiyin Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Photonics</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">8(2021), 10, p 435</subfield><subfield code="w">(DE-627)786192763</subfield><subfield code="w">(DE-600)2770002-1</subfield><subfield code="x">23046732</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10, p 435</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/photonics8100435</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b8b1d02914544438b48432d9ffd6a5cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-6732/8/10/435</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-6732</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2021</subfield><subfield code="e">10, p 435</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Bo Xiong |
spellingShingle |
Bo Xiong misc TA1501-1820 misc flow cytometry misc phytoplankton misc lensless imaging misc fluorescence imaging misc miniaturization misc microfluidic misc Applied optics. Photonics Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton |
authorStr |
Bo Xiong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)786192763 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1501-1820 |
illustrated |
Not Illustrated |
issn |
23046732 |
topic_title |
TA1501-1820 Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton flow cytometry phytoplankton lensless imaging fluorescence imaging miniaturization microfluidic |
topic |
misc TA1501-1820 misc flow cytometry misc phytoplankton misc lensless imaging misc fluorescence imaging misc miniaturization misc microfluidic misc Applied optics. Photonics |
topic_unstemmed |
misc TA1501-1820 misc flow cytometry misc phytoplankton misc lensless imaging misc fluorescence imaging misc miniaturization misc microfluidic misc Applied optics. Photonics |
topic_browse |
misc TA1501-1820 misc flow cytometry misc phytoplankton misc lensless imaging misc fluorescence imaging misc miniaturization misc microfluidic misc Applied optics. Photonics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Photonics |
hierarchy_parent_id |
786192763 |
hierarchy_top_title |
Photonics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)786192763 (DE-600)2770002-1 |
title |
Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton |
ctrlnum |
(DE-627)DOAJ014672286 (DE-599)DOAJb8b1d02914544438b48432d9ffd6a5cd |
title_full |
Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton |
author_sort |
Bo Xiong |
journal |
Photonics |
journalStr |
Photonics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Bo Xiong Tianqi Hong Herbert Schellhorn Qiyin Fang |
container_volume |
8 |
class |
TA1501-1820 |
format_se |
Elektronische Aufsätze |
author-letter |
Bo Xiong |
doi_str_mv |
10.3390/photonics8100435 |
author2-role |
verfasserin |
title_sort |
dual-modality imaging microfluidic cytometer for onsite detection of phytoplankton |
callnumber |
TA1501-1820 |
title_auth |
Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton |
abstract |
Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring. |
abstractGer |
Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring. |
abstract_unstemmed |
Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 435 |
title_short |
Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton |
url |
https://doi.org/10.3390/photonics8100435 https://doaj.org/article/b8b1d02914544438b48432d9ffd6a5cd https://www.mdpi.com/2304-6732/8/10/435 https://doaj.org/toc/2304-6732 |
remote_bool |
true |
author2 |
Tianqi Hong Herbert Schellhorn Qiyin Fang |
author2Str |
Tianqi Hong Herbert Schellhorn Qiyin Fang |
ppnlink |
786192763 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/photonics8100435 |
callnumber-a |
TA1501-1820 |
up_date |
2024-07-04T00:02:40.012Z |
_version_ |
1803604574880137216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014672286</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412134622.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/photonics8100435</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014672286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb8b1d02914544438b48432d9ffd6a5cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bo Xiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phytoplankton monitoring is essential for better understanding and mitigation of phytoplankton bloom formation. We present a microfluidic cytometer with two imaging modalities for onsite detection and identification of phytoplankton: a lensless imaging mode for morphological features, and a fluorescence imaging mode for autofluorescence signal of phytoplankton. Both imaging modes are integrated in a microfluidic device with a field of view (FoV) of 3.7 mm × 2.4 mm and a depth of field (DoF) of 0.8 mm. The particles in the water flow channel can be detected and classified with automated image processing algorithms and machine learning models using their morphology and fluorescence features. The performance of the device was demonstrated by measuring <i<Chlamydomonas</i<, <i<Euglena</i<, and non-fluorescent beads in both separate and mixed flow samples. The recall rates for <i<Chlamydomonas</i< and <i<Euglena</i< ware 93.6% and 94.4%. The dual-modality imaging approach enabled observing both morphology and fluorescence features with a large DoF and FoV which contribute to high-throughput analysis. Moreover, this imaging flow cytometer platform is portable, low-cost, and shows potential in the onsite phytoplankton monitoring.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow cytometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phytoplankton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lensless imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fluorescence imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">miniaturization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfluidic</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianqi Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Herbert Schellhorn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiyin Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Photonics</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">8(2021), 10, p 435</subfield><subfield code="w">(DE-627)786192763</subfield><subfield code="w">(DE-600)2770002-1</subfield><subfield code="x">23046732</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10, p 435</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/photonics8100435</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b8b1d02914544438b48432d9ffd6a5cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-6732/8/10/435</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-6732</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2021</subfield><subfield code="e">10, p 435</subfield></datafield></record></collection>
|
score |
7.3995953 |