On the monomial birational maps of the projective space
We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans.
Autor*in: |
Gonzalez-Sprinberg Gérard [verfasserIn] Pan Ivan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Anais da Academia Brasileira de Ciências - Academia Brasileira de Ciências, 2004, 75(2003), 2, Seite 129-134 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2003 ; number:2 ; pages:129-134 |
Links: |
---|
Katalog-ID: |
DOAJ014698897 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014698897 | ||
003 | DE-627 | ||
005 | 20230503060743.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2003 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ014698897 | ||
035 | |a (DE-599)DOAJ15a6075f7e904a8eabac7a89a15da2ca | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Gonzalez-Sprinberg Gérard |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the monomial birational maps of the projective space |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans. | ||
650 | 4 | |a monomial birational maps | |
650 | 4 | |a toric varieties | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Pan Ivan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Anais da Academia Brasileira de Ciências |d Academia Brasileira de Ciências, 2004 |g 75(2003), 2, Seite 129-134 |w (DE-627)329269984 |w (DE-600)2046885-4 |x 16782690 |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2003 |g number:2 |g pages:129-134 |
856 | 4 | 0 | |u https://doaj.org/article/15a6075f7e904a8eabac7a89a15da2ca |z kostenfrei |
856 | 4 | 0 | |u http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000200001 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0001-3765 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1678-2690 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 75 |j 2003 |e 2 |h 129-134 |
author_variant |
g s g gsg p i pi |
---|---|
matchkey_str |
article:16782690:2003----::nhmnmabrtoampote |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
(DE-627)DOAJ014698897 (DE-599)DOAJ15a6075f7e904a8eabac7a89a15da2ca DE-627 ger DE-627 rakwb eng Gonzalez-Sprinberg Gérard verfasserin aut On the monomial birational maps of the projective space 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans. monomial birational maps toric varieties Science Q Pan Ivan verfasserin aut In Anais da Academia Brasileira de Ciências Academia Brasileira de Ciências, 2004 75(2003), 2, Seite 129-134 (DE-627)329269984 (DE-600)2046885-4 16782690 nnns volume:75 year:2003 number:2 pages:129-134 https://doaj.org/article/15a6075f7e904a8eabac7a89a15da2ca kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000200001 kostenfrei https://doaj.org/toc/0001-3765 Journal toc kostenfrei https://doaj.org/toc/1678-2690 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 75 2003 2 129-134 |
spelling |
(DE-627)DOAJ014698897 (DE-599)DOAJ15a6075f7e904a8eabac7a89a15da2ca DE-627 ger DE-627 rakwb eng Gonzalez-Sprinberg Gérard verfasserin aut On the monomial birational maps of the projective space 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans. monomial birational maps toric varieties Science Q Pan Ivan verfasserin aut In Anais da Academia Brasileira de Ciências Academia Brasileira de Ciências, 2004 75(2003), 2, Seite 129-134 (DE-627)329269984 (DE-600)2046885-4 16782690 nnns volume:75 year:2003 number:2 pages:129-134 https://doaj.org/article/15a6075f7e904a8eabac7a89a15da2ca kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000200001 kostenfrei https://doaj.org/toc/0001-3765 Journal toc kostenfrei https://doaj.org/toc/1678-2690 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 75 2003 2 129-134 |
allfields_unstemmed |
(DE-627)DOAJ014698897 (DE-599)DOAJ15a6075f7e904a8eabac7a89a15da2ca DE-627 ger DE-627 rakwb eng Gonzalez-Sprinberg Gérard verfasserin aut On the monomial birational maps of the projective space 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans. monomial birational maps toric varieties Science Q Pan Ivan verfasserin aut In Anais da Academia Brasileira de Ciências Academia Brasileira de Ciências, 2004 75(2003), 2, Seite 129-134 (DE-627)329269984 (DE-600)2046885-4 16782690 nnns volume:75 year:2003 number:2 pages:129-134 https://doaj.org/article/15a6075f7e904a8eabac7a89a15da2ca kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000200001 kostenfrei https://doaj.org/toc/0001-3765 Journal toc kostenfrei https://doaj.org/toc/1678-2690 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 75 2003 2 129-134 |
allfieldsGer |
(DE-627)DOAJ014698897 (DE-599)DOAJ15a6075f7e904a8eabac7a89a15da2ca DE-627 ger DE-627 rakwb eng Gonzalez-Sprinberg Gérard verfasserin aut On the monomial birational maps of the projective space 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans. monomial birational maps toric varieties Science Q Pan Ivan verfasserin aut In Anais da Academia Brasileira de Ciências Academia Brasileira de Ciências, 2004 75(2003), 2, Seite 129-134 (DE-627)329269984 (DE-600)2046885-4 16782690 nnns volume:75 year:2003 number:2 pages:129-134 https://doaj.org/article/15a6075f7e904a8eabac7a89a15da2ca kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000200001 kostenfrei https://doaj.org/toc/0001-3765 Journal toc kostenfrei https://doaj.org/toc/1678-2690 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 75 2003 2 129-134 |
allfieldsSound |
(DE-627)DOAJ014698897 (DE-599)DOAJ15a6075f7e904a8eabac7a89a15da2ca DE-627 ger DE-627 rakwb eng Gonzalez-Sprinberg Gérard verfasserin aut On the monomial birational maps of the projective space 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans. monomial birational maps toric varieties Science Q Pan Ivan verfasserin aut In Anais da Academia Brasileira de Ciências Academia Brasileira de Ciências, 2004 75(2003), 2, Seite 129-134 (DE-627)329269984 (DE-600)2046885-4 16782690 nnns volume:75 year:2003 number:2 pages:129-134 https://doaj.org/article/15a6075f7e904a8eabac7a89a15da2ca kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000200001 kostenfrei https://doaj.org/toc/0001-3765 Journal toc kostenfrei https://doaj.org/toc/1678-2690 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 75 2003 2 129-134 |
language |
English |
source |
In Anais da Academia Brasileira de Ciências 75(2003), 2, Seite 129-134 volume:75 year:2003 number:2 pages:129-134 |
sourceStr |
In Anais da Academia Brasileira de Ciências 75(2003), 2, Seite 129-134 volume:75 year:2003 number:2 pages:129-134 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
monomial birational maps toric varieties Science Q |
isfreeaccess_bool |
true |
container_title |
Anais da Academia Brasileira de Ciências |
authorswithroles_txt_mv |
Gonzalez-Sprinberg Gérard @@aut@@ Pan Ivan @@aut@@ |
publishDateDaySort_date |
2003-01-01T00:00:00Z |
hierarchy_top_id |
329269984 |
id |
DOAJ014698897 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014698897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503060743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2003 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014698897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ15a6075f7e904a8eabac7a89a15da2ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gonzalez-Sprinberg Gérard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the monomial birational maps of the projective space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monomial birational maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toric varieties</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pan Ivan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Anais da Academia Brasileira de Ciências</subfield><subfield code="d">Academia Brasileira de Ciências, 2004</subfield><subfield code="g">75(2003), 2, Seite 129-134</subfield><subfield code="w">(DE-627)329269984</subfield><subfield code="w">(DE-600)2046885-4</subfield><subfield code="x">16782690</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:129-134</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/15a6075f7e904a8eabac7a89a15da2ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000200001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0001-3765</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1678-2690</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="h">129-134</subfield></datafield></record></collection>
|
author |
Gonzalez-Sprinberg Gérard |
spellingShingle |
Gonzalez-Sprinberg Gérard misc monomial birational maps misc toric varieties misc Science misc Q On the monomial birational maps of the projective space |
authorStr |
Gonzalez-Sprinberg Gérard |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)329269984 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
16782690 |
topic_title |
On the monomial birational maps of the projective space monomial birational maps toric varieties |
topic |
misc monomial birational maps misc toric varieties misc Science misc Q |
topic_unstemmed |
misc monomial birational maps misc toric varieties misc Science misc Q |
topic_browse |
misc monomial birational maps misc toric varieties misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Anais da Academia Brasileira de Ciências |
hierarchy_parent_id |
329269984 |
hierarchy_top_title |
Anais da Academia Brasileira de Ciências |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)329269984 (DE-600)2046885-4 |
title |
On the monomial birational maps of the projective space |
ctrlnum |
(DE-627)DOAJ014698897 (DE-599)DOAJ15a6075f7e904a8eabac7a89a15da2ca |
title_full |
On the monomial birational maps of the projective space |
author_sort |
Gonzalez-Sprinberg Gérard |
journal |
Anais da Academia Brasileira de Ciências |
journalStr |
Anais da Academia Brasileira de Ciências |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
129 |
author_browse |
Gonzalez-Sprinberg Gérard Pan Ivan |
container_volume |
75 |
format_se |
Elektronische Aufsätze |
author-letter |
Gonzalez-Sprinberg Gérard |
author2-role |
verfasserin |
title_sort |
on the monomial birational maps of the projective space |
title_auth |
On the monomial birational maps of the projective space |
abstract |
We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans. |
abstractGer |
We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans. |
abstract_unstemmed |
We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
On the monomial birational maps of the projective space |
url |
https://doaj.org/article/15a6075f7e904a8eabac7a89a15da2ca http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000200001 https://doaj.org/toc/0001-3765 https://doaj.org/toc/1678-2690 |
remote_bool |
true |
author2 |
Pan Ivan |
author2Str |
Pan Ivan |
ppnlink |
329269984 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
up_date |
2024-07-04T00:08:44.067Z |
_version_ |
1803604956616327168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014698897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503060743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2003 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014698897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ15a6075f7e904a8eabac7a89a15da2ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gonzalez-Sprinberg Gérard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the monomial birational maps of the projective space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monomial birational maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toric varieties</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pan Ivan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Anais da Academia Brasileira de Ciências</subfield><subfield code="d">Academia Brasileira de Ciências, 2004</subfield><subfield code="g">75(2003), 2, Seite 129-134</subfield><subfield code="w">(DE-627)329269984</subfield><subfield code="w">(DE-600)2046885-4</subfield><subfield code="x">16782690</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:129-134</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/15a6075f7e904a8eabac7a89a15da2ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000200001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0001-3765</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1678-2690</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="h">129-134</subfield></datafield></record></collection>
|
score |
7.4028378 |