Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary
The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured...
Ausführliche Beschreibung
Autor*in: |
Yangjie Li [verfasserIn] Dongqi Wang [verfasserIn] Zhenlou Chen [verfasserIn] Haiyan Jin [verfasserIn] Hong Hu [verfasserIn] Jianfang Chen [verfasserIn] Zhi Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 10(2018), 4, p 1139 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2018 ; number:4, p 1139 |
Links: |
---|
DOI / URN: |
10.3390/su10041139 |
---|
Katalog-ID: |
DOAJ014724731 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014724731 | ||
003 | DE-627 | ||
005 | 20230310070706.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su10041139 |2 doi | |
035 | |a (DE-627)DOAJ014724731 | ||
035 | |a (DE-599)DOAJ2c6df653284149eeb23610a1ff53c46c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Yangjie Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p < 0.05, R = 0.732; 16–20 cm: p < 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions. | ||
650 | 4 | |a estuarine salt marsh | |
650 | 4 | |a vascular plant | |
650 | 4 | |a carbon cycles | |
650 | 4 | |a methane emission | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Dongqi Wang |e verfasserin |4 aut | |
700 | 0 | |a Zhenlou Chen |e verfasserin |4 aut | |
700 | 0 | |a Haiyan Jin |e verfasserin |4 aut | |
700 | 0 | |a Hong Hu |e verfasserin |4 aut | |
700 | 0 | |a Jianfang Chen |e verfasserin |4 aut | |
700 | 0 | |a Zhi Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 10(2018), 4, p 1139 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2018 |g number:4, p 1139 |
856 | 4 | 0 | |u https://doi.org/10.3390/su10041139 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2c6df653284149eeb23610a1ff53c46c |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2071-1050/10/4/1139 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2018 |e 4, p 1139 |
author_variant |
y l yl d w dw z c zc h j hj h h hh j c jc z y zy |
---|---|
matchkey_str |
article:20711050:2018----::oefcrumrqeeomtaemsinrmnnetdlat |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TD |
publishDate |
2018 |
allfields |
10.3390/su10041139 doi (DE-627)DOAJ014724731 (DE-599)DOAJ2c6df653284149eeb23610a1ff53c46c DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yangjie Li verfasserin aut Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p < 0.05, R = 0.732; 16–20 cm: p < 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions. estuarine salt marsh vascular plant carbon cycles methane emission Environmental effects of industries and plants Renewable energy sources Environmental sciences Dongqi Wang verfasserin aut Zhenlou Chen verfasserin aut Haiyan Jin verfasserin aut Hong Hu verfasserin aut Jianfang Chen verfasserin aut Zhi Yang verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 4, p 1139 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:4, p 1139 https://doi.org/10.3390/su10041139 kostenfrei https://doaj.org/article/2c6df653284149eeb23610a1ff53c46c kostenfrei http://www.mdpi.com/2071-1050/10/4/1139 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 4, p 1139 |
spelling |
10.3390/su10041139 doi (DE-627)DOAJ014724731 (DE-599)DOAJ2c6df653284149eeb23610a1ff53c46c DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yangjie Li verfasserin aut Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p < 0.05, R = 0.732; 16–20 cm: p < 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions. estuarine salt marsh vascular plant carbon cycles methane emission Environmental effects of industries and plants Renewable energy sources Environmental sciences Dongqi Wang verfasserin aut Zhenlou Chen verfasserin aut Haiyan Jin verfasserin aut Hong Hu verfasserin aut Jianfang Chen verfasserin aut Zhi Yang verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 4, p 1139 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:4, p 1139 https://doi.org/10.3390/su10041139 kostenfrei https://doaj.org/article/2c6df653284149eeb23610a1ff53c46c kostenfrei http://www.mdpi.com/2071-1050/10/4/1139 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 4, p 1139 |
allfields_unstemmed |
10.3390/su10041139 doi (DE-627)DOAJ014724731 (DE-599)DOAJ2c6df653284149eeb23610a1ff53c46c DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yangjie Li verfasserin aut Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p < 0.05, R = 0.732; 16–20 cm: p < 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions. estuarine salt marsh vascular plant carbon cycles methane emission Environmental effects of industries and plants Renewable energy sources Environmental sciences Dongqi Wang verfasserin aut Zhenlou Chen verfasserin aut Haiyan Jin verfasserin aut Hong Hu verfasserin aut Jianfang Chen verfasserin aut Zhi Yang verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 4, p 1139 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:4, p 1139 https://doi.org/10.3390/su10041139 kostenfrei https://doaj.org/article/2c6df653284149eeb23610a1ff53c46c kostenfrei http://www.mdpi.com/2071-1050/10/4/1139 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 4, p 1139 |
allfieldsGer |
10.3390/su10041139 doi (DE-627)DOAJ014724731 (DE-599)DOAJ2c6df653284149eeb23610a1ff53c46c DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yangjie Li verfasserin aut Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p < 0.05, R = 0.732; 16–20 cm: p < 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions. estuarine salt marsh vascular plant carbon cycles methane emission Environmental effects of industries and plants Renewable energy sources Environmental sciences Dongqi Wang verfasserin aut Zhenlou Chen verfasserin aut Haiyan Jin verfasserin aut Hong Hu verfasserin aut Jianfang Chen verfasserin aut Zhi Yang verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 4, p 1139 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:4, p 1139 https://doi.org/10.3390/su10041139 kostenfrei https://doaj.org/article/2c6df653284149eeb23610a1ff53c46c kostenfrei http://www.mdpi.com/2071-1050/10/4/1139 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 4, p 1139 |
allfieldsSound |
10.3390/su10041139 doi (DE-627)DOAJ014724731 (DE-599)DOAJ2c6df653284149eeb23610a1ff53c46c DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yangjie Li verfasserin aut Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p < 0.05, R = 0.732; 16–20 cm: p < 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions. estuarine salt marsh vascular plant carbon cycles methane emission Environmental effects of industries and plants Renewable energy sources Environmental sciences Dongqi Wang verfasserin aut Zhenlou Chen verfasserin aut Haiyan Jin verfasserin aut Hong Hu verfasserin aut Jianfang Chen verfasserin aut Zhi Yang verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 4, p 1139 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:4, p 1139 https://doi.org/10.3390/su10041139 kostenfrei https://doaj.org/article/2c6df653284149eeb23610a1ff53c46c kostenfrei http://www.mdpi.com/2071-1050/10/4/1139 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 4, p 1139 |
language |
English |
source |
In Sustainability 10(2018), 4, p 1139 volume:10 year:2018 number:4, p 1139 |
sourceStr |
In Sustainability 10(2018), 4, p 1139 volume:10 year:2018 number:4, p 1139 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
estuarine salt marsh vascular plant carbon cycles methane emission Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Yangjie Li @@aut@@ Dongqi Wang @@aut@@ Zhenlou Chen @@aut@@ Haiyan Jin @@aut@@ Hong Hu @@aut@@ Jianfang Chen @@aut@@ Zhi Yang @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ014724731 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014724731</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310070706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su10041139</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014724731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2c6df653284149eeb23610a1ff53c46c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yangjie Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p &lt; 0.05, R = 0.732; 16–20 cm: p &lt; 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">estuarine salt marsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vascular plant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon cycles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">methane emission</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongqi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenlou Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyan Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 4, p 1139</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4, p 1139</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su10041139</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2c6df653284149eeb23610a1ff53c46c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2071-1050/10/4/1139</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">4, p 1139</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yangjie Li |
spellingShingle |
Yangjie Li misc TD194-195 misc TJ807-830 misc GE1-350 misc estuarine salt marsh misc vascular plant misc carbon cycles misc methane emission misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary |
authorStr |
Yangjie Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary estuarine salt marsh vascular plant carbon cycles methane emission |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc estuarine salt marsh misc vascular plant misc carbon cycles misc methane emission misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc estuarine salt marsh misc vascular plant misc carbon cycles misc methane emission misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc estuarine salt marsh misc vascular plant misc carbon cycles misc methane emission misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary |
ctrlnum |
(DE-627)DOAJ014724731 (DE-599)DOAJ2c6df653284149eeb23610a1ff53c46c |
title_full |
Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary |
author_sort |
Yangjie Li |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Yangjie Li Dongqi Wang Zhenlou Chen Haiyan Jin Hong Hu Jianfang Chen Zhi Yang |
container_volume |
10 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Yangjie Li |
doi_str_mv |
10.3390/su10041139 |
author2-role |
verfasserin |
title_sort |
role of scirpus mariqueter on methane emission from an intertidal saltmarsh of yangtze estuary |
callnumber |
TD194-195 |
title_auth |
Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary |
abstract |
The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p < 0.05, R = 0.732; 16–20 cm: p < 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions. |
abstractGer |
The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p < 0.05, R = 0.732; 16–20 cm: p < 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions. |
abstract_unstemmed |
The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p < 0.05, R = 0.732; 16–20 cm: p < 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 1139 |
title_short |
Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary |
url |
https://doi.org/10.3390/su10041139 https://doaj.org/article/2c6df653284149eeb23610a1ff53c46c http://www.mdpi.com/2071-1050/10/4/1139 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Dongqi Wang Zhenlou Chen Haiyan Jin Hong Hu Jianfang Chen Zhi Yang |
author2Str |
Dongqi Wang Zhenlou Chen Haiyan Jin Hong Hu Jianfang Chen Zhi Yang |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su10041139 |
callnumber-a |
TD194-195 |
up_date |
2024-07-04T00:14:40.436Z |
_version_ |
1803605330298404865 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014724731</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310070706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su10041139</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014724731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2c6df653284149eeb23610a1ff53c46c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yangjie Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The role of wetland plant (Scirpus mariqueter) on methane (CH4) emissions from a subtropical tidal saltmarsh of Yangtze estuary was investigated over a year. Monthly CH4 flux and pore-water CH4 concentration were characterized using static closed chamber technique and pore-water extraction. Measured chamber CH4 fluxes indicated that saltmarsh of the Yangtze estuary acted as a net source of atmospheric CH4 with annual average flux of 24.0 mgCH4·m−2·day−1. The maximum chamber CH4 flux was in August (91.2 mgCH4·m−2·day−1), whereas the minimum was observed in March (2.30 mgCH4·m−2·day−1). Calculated diffusion CH4 fluxes were generally less than 6% of the chamber fluxes. Significant correlations were observed between the chamber CH4 flux and rhizospheric pore-water CH4 concentration (11–15 cm: p &lt; 0.05, R = 0.732; 16–20 cm: p &lt; 0.05, R = 0.777). In addition, chamber CH4 fluxes from July to September constituted more than 80% of the total annual emission and were closely correlated with aboveground biomass yield of S. mariqueter. The results indicated that S. mariqueter transportation was the dominant CH4 emission pathway and it provided an efficient route for the belowground CH4 to escape into the atmosphere while avoiding oxidation, leading to CH4 emissions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">estuarine salt marsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vascular plant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon cycles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">methane emission</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongqi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenlou Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyan Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 4, p 1139</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4, p 1139</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su10041139</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2c6df653284149eeb23610a1ff53c46c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2071-1050/10/4/1139</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">4, p 1139</subfield></datafield></record></collection>
|
score |
7.4008236 |