A Dynamized Power Flow Method Based on Differential Transformation
This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictiti...
Ausführliche Beschreibung
Autor*in: |
Yang Liu [verfasserIn] Kai Sun [verfasserIn] Jiaojiao Dong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 182441-182450 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:182441-182450 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3028060 |
---|
Katalog-ID: |
DOAJ014845512 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ014845512 | ||
003 | DE-627 | ||
005 | 20230503065244.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3028060 |2 doi | |
035 | |a (DE-627)DOAJ014845512 | ||
035 | |a (DE-599)DOAJa7deb0ed13344b2c945dd00ecdd6406d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Yang Liu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Dynamized Power Flow Method Based on Differential Transformation |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method. | ||
650 | 4 | |a Continuation power flow | |
650 | 4 | |a dynamized power flow | |
650 | 4 | |a differential transformation | |
650 | 4 | |a power flow | |
650 | 4 | |a power-voltage curve | |
650 | 4 | |a voltage stability | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Kai Sun |e verfasserin |4 aut | |
700 | 0 | |a Jiaojiao Dong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 182441-182450 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:182441-182450 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3028060 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a7deb0ed13344b2c945dd00ecdd6406d |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9210611/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 182441-182450 |
author_variant |
y l yl k s ks j d jd |
---|---|
matchkey_str |
article:21693536:2020----::dnmzdoefomtobsdnifrni |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3028060 doi (DE-627)DOAJ014845512 (DE-599)DOAJa7deb0ed13344b2c945dd00ecdd6406d DE-627 ger DE-627 rakwb eng TK1-9971 Yang Liu verfasserin aut A Dynamized Power Flow Method Based on Differential Transformation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method. Continuation power flow dynamized power flow differential transformation power flow power-voltage curve voltage stability Electrical engineering. Electronics. Nuclear engineering Kai Sun verfasserin aut Jiaojiao Dong verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 182441-182450 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:182441-182450 https://doi.org/10.1109/ACCESS.2020.3028060 kostenfrei https://doaj.org/article/a7deb0ed13344b2c945dd00ecdd6406d kostenfrei https://ieeexplore.ieee.org/document/9210611/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 182441-182450 |
spelling |
10.1109/ACCESS.2020.3028060 doi (DE-627)DOAJ014845512 (DE-599)DOAJa7deb0ed13344b2c945dd00ecdd6406d DE-627 ger DE-627 rakwb eng TK1-9971 Yang Liu verfasserin aut A Dynamized Power Flow Method Based on Differential Transformation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method. Continuation power flow dynamized power flow differential transformation power flow power-voltage curve voltage stability Electrical engineering. Electronics. Nuclear engineering Kai Sun verfasserin aut Jiaojiao Dong verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 182441-182450 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:182441-182450 https://doi.org/10.1109/ACCESS.2020.3028060 kostenfrei https://doaj.org/article/a7deb0ed13344b2c945dd00ecdd6406d kostenfrei https://ieeexplore.ieee.org/document/9210611/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 182441-182450 |
allfields_unstemmed |
10.1109/ACCESS.2020.3028060 doi (DE-627)DOAJ014845512 (DE-599)DOAJa7deb0ed13344b2c945dd00ecdd6406d DE-627 ger DE-627 rakwb eng TK1-9971 Yang Liu verfasserin aut A Dynamized Power Flow Method Based on Differential Transformation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method. Continuation power flow dynamized power flow differential transformation power flow power-voltage curve voltage stability Electrical engineering. Electronics. Nuclear engineering Kai Sun verfasserin aut Jiaojiao Dong verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 182441-182450 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:182441-182450 https://doi.org/10.1109/ACCESS.2020.3028060 kostenfrei https://doaj.org/article/a7deb0ed13344b2c945dd00ecdd6406d kostenfrei https://ieeexplore.ieee.org/document/9210611/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 182441-182450 |
allfieldsGer |
10.1109/ACCESS.2020.3028060 doi (DE-627)DOAJ014845512 (DE-599)DOAJa7deb0ed13344b2c945dd00ecdd6406d DE-627 ger DE-627 rakwb eng TK1-9971 Yang Liu verfasserin aut A Dynamized Power Flow Method Based on Differential Transformation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method. Continuation power flow dynamized power flow differential transformation power flow power-voltage curve voltage stability Electrical engineering. Electronics. Nuclear engineering Kai Sun verfasserin aut Jiaojiao Dong verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 182441-182450 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:182441-182450 https://doi.org/10.1109/ACCESS.2020.3028060 kostenfrei https://doaj.org/article/a7deb0ed13344b2c945dd00ecdd6406d kostenfrei https://ieeexplore.ieee.org/document/9210611/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 182441-182450 |
allfieldsSound |
10.1109/ACCESS.2020.3028060 doi (DE-627)DOAJ014845512 (DE-599)DOAJa7deb0ed13344b2c945dd00ecdd6406d DE-627 ger DE-627 rakwb eng TK1-9971 Yang Liu verfasserin aut A Dynamized Power Flow Method Based on Differential Transformation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method. Continuation power flow dynamized power flow differential transformation power flow power-voltage curve voltage stability Electrical engineering. Electronics. Nuclear engineering Kai Sun verfasserin aut Jiaojiao Dong verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 182441-182450 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:182441-182450 https://doi.org/10.1109/ACCESS.2020.3028060 kostenfrei https://doaj.org/article/a7deb0ed13344b2c945dd00ecdd6406d kostenfrei https://ieeexplore.ieee.org/document/9210611/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 182441-182450 |
language |
English |
source |
In IEEE Access 8(2020), Seite 182441-182450 volume:8 year:2020 pages:182441-182450 |
sourceStr |
In IEEE Access 8(2020), Seite 182441-182450 volume:8 year:2020 pages:182441-182450 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Continuation power flow dynamized power flow differential transformation power flow power-voltage curve voltage stability Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Yang Liu @@aut@@ Kai Sun @@aut@@ Jiaojiao Dong @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ014845512 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014845512</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503065244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3028060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014845512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa7deb0ed13344b2c945dd00ecdd6406d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Dynamized Power Flow Method Based on Differential Transformation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuation power flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamized power flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power-voltage curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage stability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaojiao Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 182441-182450</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:182441-182450</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3028060</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a7deb0ed13344b2c945dd00ecdd6406d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9210611/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">182441-182450</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yang Liu |
spellingShingle |
Yang Liu misc TK1-9971 misc Continuation power flow misc dynamized power flow misc differential transformation misc power flow misc power-voltage curve misc voltage stability misc Electrical engineering. Electronics. Nuclear engineering A Dynamized Power Flow Method Based on Differential Transformation |
authorStr |
Yang Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Dynamized Power Flow Method Based on Differential Transformation Continuation power flow dynamized power flow differential transformation power flow power-voltage curve voltage stability |
topic |
misc TK1-9971 misc Continuation power flow misc dynamized power flow misc differential transformation misc power flow misc power-voltage curve misc voltage stability misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Continuation power flow misc dynamized power flow misc differential transformation misc power flow misc power-voltage curve misc voltage stability misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Continuation power flow misc dynamized power flow misc differential transformation misc power flow misc power-voltage curve misc voltage stability misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Dynamized Power Flow Method Based on Differential Transformation |
ctrlnum |
(DE-627)DOAJ014845512 (DE-599)DOAJa7deb0ed13344b2c945dd00ecdd6406d |
title_full |
A Dynamized Power Flow Method Based on Differential Transformation |
author_sort |
Yang Liu |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
182441 |
author_browse |
Yang Liu Kai Sun Jiaojiao Dong |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Yang Liu |
doi_str_mv |
10.1109/ACCESS.2020.3028060 |
author2-role |
verfasserin |
title_sort |
dynamized power flow method based on differential transformation |
callnumber |
TK1-9971 |
title_auth |
A Dynamized Power Flow Method Based on Differential Transformation |
abstract |
This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method. |
abstractGer |
This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method. |
abstract_unstemmed |
This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Dynamized Power Flow Method Based on Differential Transformation |
url |
https://doi.org/10.1109/ACCESS.2020.3028060 https://doaj.org/article/a7deb0ed13344b2c945dd00ecdd6406d https://ieeexplore.ieee.org/document/9210611/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Kai Sun Jiaojiao Dong |
author2Str |
Kai Sun Jiaojiao Dong |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3028060 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:42:05.191Z |
_version_ |
1803607054945878017 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ014845512</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503065244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3028060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ014845512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa7deb0ed13344b2c945dd00ecdd6406d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Dynamized Power Flow Method Based on Differential Transformation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a novel method for solving and tracing power flow solutions with changes of a loading parameter. Different from the conventional continuation power flow method, which repeatedly solves static AC power flow equations, the proposed method extends the power flow model into a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the original solution curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear power flow equations in the time domain are converted to formally linear equations in the domain of the power series order after the differential transformation, thus avoiding numerical iterations. Case studies on several test systems including a 2383-bus system show the merits of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuation power flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamized power flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power-voltage curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage stability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaojiao Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 182441-182450</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:182441-182450</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3028060</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a7deb0ed13344b2c945dd00ecdd6406d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9210611/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">182441-182450</subfield></datafield></record></collection>
|
score |
7.4012938 |