Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device
The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this...
Ausführliche Beschreibung
Autor*in: |
Shinyoung Kwag [verfasserIn] Seunghyun Eem [verfasserIn] Jinsung Kwak [verfasserIn] Hwanho Lee [verfasserIn] Jinho Oh [verfasserIn] Gyeong-Hoi Koo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nuclear Engineering and Technology - Elsevier, 2016, 53(2021), 8, Seite 2728-2745 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2021 ; number:8 ; pages:2728-2745 |
Links: |
---|
DOI / URN: |
10.1016/j.net.2021.02.009 |
---|
Katalog-ID: |
DOAJ015049760 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ015049760 | ||
003 | DE-627 | ||
005 | 20230310072452.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.net.2021.02.009 |2 doi | |
035 | |a (DE-627)DOAJ015049760 | ||
035 | |a (DE-599)DOAJ6d65cc2c374d48898fd06e0e2376ce9e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK9001-9401 | |
100 | 0 | |a Shinyoung Kwag |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance. | ||
650 | 4 | |a Piping | |
650 | 4 | |a Tuned mass damper (TMD) device | |
650 | 4 | |a Dynamic absorber | |
650 | 4 | |a Nuclear power plant | |
650 | 4 | |a Device design | |
650 | 4 | |a Device fabrication | |
653 | 0 | |a Nuclear engineering. Atomic power | |
700 | 0 | |a Seunghyun Eem |e verfasserin |4 aut | |
700 | 0 | |a Jinsung Kwak |e verfasserin |4 aut | |
700 | 0 | |a Hwanho Lee |e verfasserin |4 aut | |
700 | 0 | |a Jinho Oh |e verfasserin |4 aut | |
700 | 0 | |a Gyeong-Hoi Koo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nuclear Engineering and Technology |d Elsevier, 2016 |g 53(2021), 8, Seite 2728-2745 |w (DE-627)63243855X |w (DE-600)2566624-1 |x 17385733 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2021 |g number:8 |g pages:2728-2745 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.net.2021.02.009 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6d65cc2c374d48898fd06e0e2376ce9e |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1738573321000991 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1738-5733 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 53 |j 2021 |e 8 |h 2728-2745 |
author_variant |
s k sk s e se j k jk h l hl j o jo g h k ghk |
---|---|
matchkey_str |
article:17385733:2021----::iiainfesirsossfcululappnbaeldvl |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1016/j.net.2021.02.009 doi (DE-627)DOAJ015049760 (DE-599)DOAJ6d65cc2c374d48898fd06e0e2376ce9e DE-627 ger DE-627 rakwb eng TK9001-9401 Shinyoung Kwag verfasserin aut Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance. Piping Tuned mass damper (TMD) device Dynamic absorber Nuclear power plant Device design Device fabrication Nuclear engineering. Atomic power Seunghyun Eem verfasserin aut Jinsung Kwak verfasserin aut Hwanho Lee verfasserin aut Jinho Oh verfasserin aut Gyeong-Hoi Koo verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 8, Seite 2728-2745 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:8 pages:2728-2745 https://doi.org/10.1016/j.net.2021.02.009 kostenfrei https://doaj.org/article/6d65cc2c374d48898fd06e0e2376ce9e kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573321000991 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 8 2728-2745 |
spelling |
10.1016/j.net.2021.02.009 doi (DE-627)DOAJ015049760 (DE-599)DOAJ6d65cc2c374d48898fd06e0e2376ce9e DE-627 ger DE-627 rakwb eng TK9001-9401 Shinyoung Kwag verfasserin aut Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance. Piping Tuned mass damper (TMD) device Dynamic absorber Nuclear power plant Device design Device fabrication Nuclear engineering. Atomic power Seunghyun Eem verfasserin aut Jinsung Kwak verfasserin aut Hwanho Lee verfasserin aut Jinho Oh verfasserin aut Gyeong-Hoi Koo verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 8, Seite 2728-2745 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:8 pages:2728-2745 https://doi.org/10.1016/j.net.2021.02.009 kostenfrei https://doaj.org/article/6d65cc2c374d48898fd06e0e2376ce9e kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573321000991 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 8 2728-2745 |
allfields_unstemmed |
10.1016/j.net.2021.02.009 doi (DE-627)DOAJ015049760 (DE-599)DOAJ6d65cc2c374d48898fd06e0e2376ce9e DE-627 ger DE-627 rakwb eng TK9001-9401 Shinyoung Kwag verfasserin aut Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance. Piping Tuned mass damper (TMD) device Dynamic absorber Nuclear power plant Device design Device fabrication Nuclear engineering. Atomic power Seunghyun Eem verfasserin aut Jinsung Kwak verfasserin aut Hwanho Lee verfasserin aut Jinho Oh verfasserin aut Gyeong-Hoi Koo verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 8, Seite 2728-2745 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:8 pages:2728-2745 https://doi.org/10.1016/j.net.2021.02.009 kostenfrei https://doaj.org/article/6d65cc2c374d48898fd06e0e2376ce9e kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573321000991 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 8 2728-2745 |
allfieldsGer |
10.1016/j.net.2021.02.009 doi (DE-627)DOAJ015049760 (DE-599)DOAJ6d65cc2c374d48898fd06e0e2376ce9e DE-627 ger DE-627 rakwb eng TK9001-9401 Shinyoung Kwag verfasserin aut Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance. Piping Tuned mass damper (TMD) device Dynamic absorber Nuclear power plant Device design Device fabrication Nuclear engineering. Atomic power Seunghyun Eem verfasserin aut Jinsung Kwak verfasserin aut Hwanho Lee verfasserin aut Jinho Oh verfasserin aut Gyeong-Hoi Koo verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 8, Seite 2728-2745 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:8 pages:2728-2745 https://doi.org/10.1016/j.net.2021.02.009 kostenfrei https://doaj.org/article/6d65cc2c374d48898fd06e0e2376ce9e kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573321000991 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 8 2728-2745 |
allfieldsSound |
10.1016/j.net.2021.02.009 doi (DE-627)DOAJ015049760 (DE-599)DOAJ6d65cc2c374d48898fd06e0e2376ce9e DE-627 ger DE-627 rakwb eng TK9001-9401 Shinyoung Kwag verfasserin aut Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance. Piping Tuned mass damper (TMD) device Dynamic absorber Nuclear power plant Device design Device fabrication Nuclear engineering. Atomic power Seunghyun Eem verfasserin aut Jinsung Kwak verfasserin aut Hwanho Lee verfasserin aut Jinho Oh verfasserin aut Gyeong-Hoi Koo verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 8, Seite 2728-2745 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:8 pages:2728-2745 https://doi.org/10.1016/j.net.2021.02.009 kostenfrei https://doaj.org/article/6d65cc2c374d48898fd06e0e2376ce9e kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573321000991 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 8 2728-2745 |
language |
English |
source |
In Nuclear Engineering and Technology 53(2021), 8, Seite 2728-2745 volume:53 year:2021 number:8 pages:2728-2745 |
sourceStr |
In Nuclear Engineering and Technology 53(2021), 8, Seite 2728-2745 volume:53 year:2021 number:8 pages:2728-2745 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Piping Tuned mass damper (TMD) device Dynamic absorber Nuclear power plant Device design Device fabrication Nuclear engineering. Atomic power |
isfreeaccess_bool |
true |
container_title |
Nuclear Engineering and Technology |
authorswithroles_txt_mv |
Shinyoung Kwag @@aut@@ Seunghyun Eem @@aut@@ Jinsung Kwak @@aut@@ Hwanho Lee @@aut@@ Jinho Oh @@aut@@ Gyeong-Hoi Koo @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
63243855X |
id |
DOAJ015049760 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015049760</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310072452.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.net.2021.02.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015049760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6d65cc2c374d48898fd06e0e2376ce9e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shinyoung Kwag</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tuned mass damper (TMD) device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic absorber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear power plant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Device design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Device fabrication</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seunghyun Eem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinsung Kwak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hwanho Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinho Oh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gyeong-Hoi Koo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nuclear Engineering and Technology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">53(2021), 8, Seite 2728-2745</subfield><subfield code="w">(DE-627)63243855X</subfield><subfield code="w">(DE-600)2566624-1</subfield><subfield code="x">17385733</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:2728-2745</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.net.2021.02.009</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6d65cc2c374d48898fd06e0e2376ce9e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1738573321000991</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1738-5733</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="h">2728-2745</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Shinyoung Kwag |
spellingShingle |
Shinyoung Kwag misc TK9001-9401 misc Piping misc Tuned mass damper (TMD) device misc Dynamic absorber misc Nuclear power plant misc Device design misc Device fabrication misc Nuclear engineering. Atomic power Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device |
authorStr |
Shinyoung Kwag |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)63243855X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK9001-9401 |
illustrated |
Not Illustrated |
issn |
17385733 |
topic_title |
TK9001-9401 Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device Piping Tuned mass damper (TMD) device Dynamic absorber Nuclear power plant Device design Device fabrication |
topic |
misc TK9001-9401 misc Piping misc Tuned mass damper (TMD) device misc Dynamic absorber misc Nuclear power plant misc Device design misc Device fabrication misc Nuclear engineering. Atomic power |
topic_unstemmed |
misc TK9001-9401 misc Piping misc Tuned mass damper (TMD) device misc Dynamic absorber misc Nuclear power plant misc Device design misc Device fabrication misc Nuclear engineering. Atomic power |
topic_browse |
misc TK9001-9401 misc Piping misc Tuned mass damper (TMD) device misc Dynamic absorber misc Nuclear power plant misc Device design misc Device fabrication misc Nuclear engineering. Atomic power |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear Engineering and Technology |
hierarchy_parent_id |
63243855X |
hierarchy_top_title |
Nuclear Engineering and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)63243855X (DE-600)2566624-1 |
title |
Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device |
ctrlnum |
(DE-627)DOAJ015049760 (DE-599)DOAJ6d65cc2c374d48898fd06e0e2376ce9e |
title_full |
Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device |
author_sort |
Shinyoung Kwag |
journal |
Nuclear Engineering and Technology |
journalStr |
Nuclear Engineering and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
2728 |
author_browse |
Shinyoung Kwag Seunghyun Eem Jinsung Kwak Hwanho Lee Jinho Oh Gyeong-Hoi Koo |
container_volume |
53 |
class |
TK9001-9401 |
format_se |
Elektronische Aufsätze |
author-letter |
Shinyoung Kwag |
doi_str_mv |
10.1016/j.net.2021.02.009 |
author2-role |
verfasserin |
title_sort |
mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device |
callnumber |
TK9001-9401 |
title_auth |
Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device |
abstract |
The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance. |
abstractGer |
The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance. |
abstract_unstemmed |
The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device |
url |
https://doi.org/10.1016/j.net.2021.02.009 https://doaj.org/article/6d65cc2c374d48898fd06e0e2376ce9e http://www.sciencedirect.com/science/article/pii/S1738573321000991 https://doaj.org/toc/1738-5733 |
remote_bool |
true |
author2 |
Seunghyun Eem Jinsung Kwak Hwanho Lee Jinho Oh Gyeong-Hoi Koo |
author2Str |
Seunghyun Eem Jinsung Kwak Hwanho Lee Jinho Oh Gyeong-Hoi Koo |
ppnlink |
63243855X |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.net.2021.02.009 |
callnumber-a |
TK9001-9401 |
up_date |
2024-07-04T01:26:09.528Z |
_version_ |
1803609827739435008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015049760</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310072452.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.net.2021.02.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015049760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6d65cc2c374d48898fd06e0e2376ce9e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shinyoung Kwag</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tuned mass damper (TMD) device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic absorber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear power plant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Device design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Device fabrication</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seunghyun Eem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinsung Kwak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hwanho Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinho Oh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gyeong-Hoi Koo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nuclear Engineering and Technology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">53(2021), 8, Seite 2728-2745</subfield><subfield code="w">(DE-627)63243855X</subfield><subfield code="w">(DE-600)2566624-1</subfield><subfield code="x">17385733</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:2728-2745</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.net.2021.02.009</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6d65cc2c374d48898fd06e0e2376ce9e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1738573321000991</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1738-5733</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="h">2728-2745</subfield></datafield></record></collection>
|
score |
7.399046 |