DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes
The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pi...
Ausführliche Beschreibung
Autor*in: |
Silvia Pierandrei [verfasserIn] Gessica Truglio [verfasserIn] Fabrizio Ceci [verfasserIn] Paola Del Porto [verfasserIn] Sabina Maria Bruno [verfasserIn] Stefano Castellani [verfasserIn] Massimo Conese [verfasserIn] Fiorentina Ascenzioni [verfasserIn] Marco Lucarelli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Molecular Sciences - MDPI AG, 2003, 22(2021), 7, p 3754 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2021 ; number:7, p 3754 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijms22073754 |
---|
Katalog-ID: |
DOAJ015138747 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ015138747 | ||
003 | DE-627 | ||
005 | 20240412185021.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijms22073754 |2 doi | |
035 | |a (DE-627)DOAJ015138747 | ||
035 | |a (DE-599)DOAJe6c38e5b0d3c40d9aa288d5ef0a80acd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Silvia Pierandrei |e verfasserin |4 aut | |
245 | 1 | 0 | |a DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF. | ||
650 | 4 | |a epithelial sodium channel | |
650 | 4 | |a DNA methylation | |
650 | 4 | |a transcriptional control | |
650 | 4 | |a cystic fibrosis | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Gessica Truglio |e verfasserin |4 aut | |
700 | 0 | |a Fabrizio Ceci |e verfasserin |4 aut | |
700 | 0 | |a Paola Del Porto |e verfasserin |4 aut | |
700 | 0 | |a Sabina Maria Bruno |e verfasserin |4 aut | |
700 | 0 | |a Stefano Castellani |e verfasserin |4 aut | |
700 | 0 | |a Massimo Conese |e verfasserin |4 aut | |
700 | 0 | |a Fiorentina Ascenzioni |e verfasserin |4 aut | |
700 | 0 | |a Marco Lucarelli |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Molecular Sciences |d MDPI AG, 2003 |g 22(2021), 7, p 3754 |w (DE-627)316340715 |w (DE-600)2019364-6 |x 14220067 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2021 |g number:7, p 3754 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijms22073754 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e6c38e5b0d3c40d9aa288d5ef0a80acd |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1422-0067/22/7/3754 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-6596 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1422-0067 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2021 |e 7, p 3754 |
author_variant |
s p sp g t gt f c fc p d p pdp s m b smb s c sc m c mc f a fa m l ml |
---|---|
matchkey_str |
article:14220067:2021----::nmtyainatrsorltwttexrsinfsn1isn1inicngei |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.3390/ijms22073754 doi (DE-627)DOAJ015138747 (DE-599)DOAJe6c38e5b0d3c40d9aa288d5ef0a80acd DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Silvia Pierandrei verfasserin aut DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF. epithelial sodium channel DNA methylation transcriptional control cystic fibrosis Biology (General) Chemistry Gessica Truglio verfasserin aut Fabrizio Ceci verfasserin aut Paola Del Porto verfasserin aut Sabina Maria Bruno verfasserin aut Stefano Castellani verfasserin aut Massimo Conese verfasserin aut Fiorentina Ascenzioni verfasserin aut Marco Lucarelli verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 7, p 3754 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:7, p 3754 https://doi.org/10.3390/ijms22073754 kostenfrei https://doaj.org/article/e6c38e5b0d3c40d9aa288d5ef0a80acd kostenfrei https://www.mdpi.com/1422-0067/22/7/3754 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 7, p 3754 |
spelling |
10.3390/ijms22073754 doi (DE-627)DOAJ015138747 (DE-599)DOAJe6c38e5b0d3c40d9aa288d5ef0a80acd DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Silvia Pierandrei verfasserin aut DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF. epithelial sodium channel DNA methylation transcriptional control cystic fibrosis Biology (General) Chemistry Gessica Truglio verfasserin aut Fabrizio Ceci verfasserin aut Paola Del Porto verfasserin aut Sabina Maria Bruno verfasserin aut Stefano Castellani verfasserin aut Massimo Conese verfasserin aut Fiorentina Ascenzioni verfasserin aut Marco Lucarelli verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 7, p 3754 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:7, p 3754 https://doi.org/10.3390/ijms22073754 kostenfrei https://doaj.org/article/e6c38e5b0d3c40d9aa288d5ef0a80acd kostenfrei https://www.mdpi.com/1422-0067/22/7/3754 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 7, p 3754 |
allfields_unstemmed |
10.3390/ijms22073754 doi (DE-627)DOAJ015138747 (DE-599)DOAJe6c38e5b0d3c40d9aa288d5ef0a80acd DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Silvia Pierandrei verfasserin aut DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF. epithelial sodium channel DNA methylation transcriptional control cystic fibrosis Biology (General) Chemistry Gessica Truglio verfasserin aut Fabrizio Ceci verfasserin aut Paola Del Porto verfasserin aut Sabina Maria Bruno verfasserin aut Stefano Castellani verfasserin aut Massimo Conese verfasserin aut Fiorentina Ascenzioni verfasserin aut Marco Lucarelli verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 7, p 3754 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:7, p 3754 https://doi.org/10.3390/ijms22073754 kostenfrei https://doaj.org/article/e6c38e5b0d3c40d9aa288d5ef0a80acd kostenfrei https://www.mdpi.com/1422-0067/22/7/3754 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 7, p 3754 |
allfieldsGer |
10.3390/ijms22073754 doi (DE-627)DOAJ015138747 (DE-599)DOAJe6c38e5b0d3c40d9aa288d5ef0a80acd DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Silvia Pierandrei verfasserin aut DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF. epithelial sodium channel DNA methylation transcriptional control cystic fibrosis Biology (General) Chemistry Gessica Truglio verfasserin aut Fabrizio Ceci verfasserin aut Paola Del Porto verfasserin aut Sabina Maria Bruno verfasserin aut Stefano Castellani verfasserin aut Massimo Conese verfasserin aut Fiorentina Ascenzioni verfasserin aut Marco Lucarelli verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 7, p 3754 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:7, p 3754 https://doi.org/10.3390/ijms22073754 kostenfrei https://doaj.org/article/e6c38e5b0d3c40d9aa288d5ef0a80acd kostenfrei https://www.mdpi.com/1422-0067/22/7/3754 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 7, p 3754 |
allfieldsSound |
10.3390/ijms22073754 doi (DE-627)DOAJ015138747 (DE-599)DOAJe6c38e5b0d3c40d9aa288d5ef0a80acd DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Silvia Pierandrei verfasserin aut DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF. epithelial sodium channel DNA methylation transcriptional control cystic fibrosis Biology (General) Chemistry Gessica Truglio verfasserin aut Fabrizio Ceci verfasserin aut Paola Del Porto verfasserin aut Sabina Maria Bruno verfasserin aut Stefano Castellani verfasserin aut Massimo Conese verfasserin aut Fiorentina Ascenzioni verfasserin aut Marco Lucarelli verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 7, p 3754 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:7, p 3754 https://doi.org/10.3390/ijms22073754 kostenfrei https://doaj.org/article/e6c38e5b0d3c40d9aa288d5ef0a80acd kostenfrei https://www.mdpi.com/1422-0067/22/7/3754 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 7, p 3754 |
language |
English |
source |
In International Journal of Molecular Sciences 22(2021), 7, p 3754 volume:22 year:2021 number:7, p 3754 |
sourceStr |
In International Journal of Molecular Sciences 22(2021), 7, p 3754 volume:22 year:2021 number:7, p 3754 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
epithelial sodium channel DNA methylation transcriptional control cystic fibrosis Biology (General) Chemistry |
isfreeaccess_bool |
true |
container_title |
International Journal of Molecular Sciences |
authorswithroles_txt_mv |
Silvia Pierandrei @@aut@@ Gessica Truglio @@aut@@ Fabrizio Ceci @@aut@@ Paola Del Porto @@aut@@ Sabina Maria Bruno @@aut@@ Stefano Castellani @@aut@@ Massimo Conese @@aut@@ Fiorentina Ascenzioni @@aut@@ Marco Lucarelli @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
316340715 |
id |
DOAJ015138747 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015138747</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412185021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms22073754</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015138747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe6c38e5b0d3c40d9aa288d5ef0a80acd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Silvia Pierandrei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epithelial sodium channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptional control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cystic fibrosis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gessica Truglio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabrizio Ceci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Del Porto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabina Maria Bruno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefano Castellani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Massimo Conese</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fiorentina Ascenzioni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Lucarelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2021), 7, p 3754</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7, p 3754</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms22073754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e6c38e5b0d3c40d9aa288d5ef0a80acd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/22/7/3754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2021</subfield><subfield code="e">7, p 3754</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Silvia Pierandrei |
spellingShingle |
Silvia Pierandrei misc QH301-705.5 misc QD1-999 misc epithelial sodium channel misc DNA methylation misc transcriptional control misc cystic fibrosis misc Biology (General) misc Chemistry DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes |
authorStr |
Silvia Pierandrei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340715 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
14220067 |
topic_title |
QH301-705.5 QD1-999 DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes epithelial sodium channel DNA methylation transcriptional control cystic fibrosis |
topic |
misc QH301-705.5 misc QD1-999 misc epithelial sodium channel misc DNA methylation misc transcriptional control misc cystic fibrosis misc Biology (General) misc Chemistry |
topic_unstemmed |
misc QH301-705.5 misc QD1-999 misc epithelial sodium channel misc DNA methylation misc transcriptional control misc cystic fibrosis misc Biology (General) misc Chemistry |
topic_browse |
misc QH301-705.5 misc QD1-999 misc epithelial sodium channel misc DNA methylation misc transcriptional control misc cystic fibrosis misc Biology (General) misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Molecular Sciences |
hierarchy_parent_id |
316340715 |
hierarchy_top_title |
International Journal of Molecular Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340715 (DE-600)2019364-6 |
title |
DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes |
ctrlnum |
(DE-627)DOAJ015138747 (DE-599)DOAJe6c38e5b0d3c40d9aa288d5ef0a80acd |
title_full |
DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes |
author_sort |
Silvia Pierandrei |
journal |
International Journal of Molecular Sciences |
journalStr |
International Journal of Molecular Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Silvia Pierandrei Gessica Truglio Fabrizio Ceci Paola Del Porto Sabina Maria Bruno Stefano Castellani Massimo Conese Fiorentina Ascenzioni Marco Lucarelli |
container_volume |
22 |
class |
QH301-705.5 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Silvia Pierandrei |
doi_str_mv |
10.3390/ijms22073754 |
author2-role |
verfasserin |
title_sort |
dna methylation patterns correlate with the expression of <i<scnn1a</i<, <i<scnn1b</i<, and <i<scnn1g</i< (epithelial sodium channel, enac) genes |
callnumber |
QH301-705.5 |
title_auth |
DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes |
abstract |
The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF. |
abstractGer |
The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF. |
abstract_unstemmed |
The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 3754 |
title_short |
DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes |
url |
https://doi.org/10.3390/ijms22073754 https://doaj.org/article/e6c38e5b0d3c40d9aa288d5ef0a80acd https://www.mdpi.com/1422-0067/22/7/3754 https://doaj.org/toc/1661-6596 https://doaj.org/toc/1422-0067 |
remote_bool |
true |
author2 |
Gessica Truglio Fabrizio Ceci Paola Del Porto Sabina Maria Bruno Stefano Castellani Massimo Conese Fiorentina Ascenzioni Marco Lucarelli |
author2Str |
Gessica Truglio Fabrizio Ceci Paola Del Porto Sabina Maria Bruno Stefano Castellani Massimo Conese Fiorentina Ascenzioni Marco Lucarelli |
ppnlink |
316340715 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijms22073754 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-04T01:45:58.911Z |
_version_ |
1803611074898952192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015138747</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412185021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms22073754</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015138747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe6c38e5b0d3c40d9aa288d5ef0a80acd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Silvia Pierandrei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DNA Methylation Patterns Correlate with the Expression of <i<SCNN1A</i<, <i<SCNN1B</i<, and <i<SCNN1G</i< (Epithelial Sodium Channel, ENaC) Genes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of <i<CFTR</i< and ENaC subunits α, β and γ (respectively <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes) was studied by real time PCR. DNA methylation of 5′-flanking region of <i<SCNN1A</i<, <i<SCNN1B,</i< and <i<SCNN1G</i< genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The <i<SCNN1A</i< gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, <i<SCNN1B</i< and <i<SCNN1G</i< genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epithelial sodium channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptional control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cystic fibrosis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gessica Truglio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabrizio Ceci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Del Porto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabina Maria Bruno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefano Castellani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Massimo Conese</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fiorentina Ascenzioni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Lucarelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2021), 7, p 3754</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7, p 3754</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms22073754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e6c38e5b0d3c40d9aa288d5ef0a80acd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/22/7/3754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2021</subfield><subfield code="e">7, p 3754</subfield></datafield></record></collection>
|
score |
7.4017296 |