Characterizing Forest Dynamics with Landsat-Derived Phenology Curves
Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, int...
Ausführliche Beschreibung
Autor*in: |
M. Brooke Rose [verfasserIn] Nicholas N. Nagle [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 13(2021), 2, p 267 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:2, p 267 |
Links: |
---|
DOI / URN: |
10.3390/rs13020267 |
---|
Katalog-ID: |
DOAJ015159493 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ015159493 | ||
003 | DE-627 | ||
005 | 20240414075946.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs13020267 |2 doi | |
035 | |a (DE-627)DOAJ015159493 | ||
035 | |a (DE-599)DOAJc6cfe4eb8d754b7dbef73c85f419aee1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a M. Brooke Rose |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characterizing Forest Dynamics with Landsat-Derived Phenology Curves |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change. | ||
650 | 4 | |a forest recovery | |
650 | 4 | |a Landsat | |
650 | 4 | |a vegetation phenology | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Nicholas N. Nagle |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 13(2021), 2, p 267 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:2, p 267 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs13020267 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c6cfe4eb8d754b7dbef73c85f419aee1 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/13/2/267 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 2, p 267 |
author_variant |
m b r mbr n n n nnn |
---|---|
matchkey_str |
article:20724292:2021----::hrceiigoetyaisihadadrv |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/rs13020267 doi (DE-627)DOAJ015159493 (DE-599)DOAJc6cfe4eb8d754b7dbef73c85f419aee1 DE-627 ger DE-627 rakwb eng M. Brooke Rose verfasserin aut Characterizing Forest Dynamics with Landsat-Derived Phenology Curves 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change. forest recovery Landsat vegetation phenology Science Q Nicholas N. Nagle verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 2, p 267 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:2, p 267 https://doi.org/10.3390/rs13020267 kostenfrei https://doaj.org/article/c6cfe4eb8d754b7dbef73c85f419aee1 kostenfrei https://www.mdpi.com/2072-4292/13/2/267 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 2, p 267 |
spelling |
10.3390/rs13020267 doi (DE-627)DOAJ015159493 (DE-599)DOAJc6cfe4eb8d754b7dbef73c85f419aee1 DE-627 ger DE-627 rakwb eng M. Brooke Rose verfasserin aut Characterizing Forest Dynamics with Landsat-Derived Phenology Curves 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change. forest recovery Landsat vegetation phenology Science Q Nicholas N. Nagle verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 2, p 267 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:2, p 267 https://doi.org/10.3390/rs13020267 kostenfrei https://doaj.org/article/c6cfe4eb8d754b7dbef73c85f419aee1 kostenfrei https://www.mdpi.com/2072-4292/13/2/267 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 2, p 267 |
allfields_unstemmed |
10.3390/rs13020267 doi (DE-627)DOAJ015159493 (DE-599)DOAJc6cfe4eb8d754b7dbef73c85f419aee1 DE-627 ger DE-627 rakwb eng M. Brooke Rose verfasserin aut Characterizing Forest Dynamics with Landsat-Derived Phenology Curves 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change. forest recovery Landsat vegetation phenology Science Q Nicholas N. Nagle verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 2, p 267 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:2, p 267 https://doi.org/10.3390/rs13020267 kostenfrei https://doaj.org/article/c6cfe4eb8d754b7dbef73c85f419aee1 kostenfrei https://www.mdpi.com/2072-4292/13/2/267 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 2, p 267 |
allfieldsGer |
10.3390/rs13020267 doi (DE-627)DOAJ015159493 (DE-599)DOAJc6cfe4eb8d754b7dbef73c85f419aee1 DE-627 ger DE-627 rakwb eng M. Brooke Rose verfasserin aut Characterizing Forest Dynamics with Landsat-Derived Phenology Curves 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change. forest recovery Landsat vegetation phenology Science Q Nicholas N. Nagle verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 2, p 267 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:2, p 267 https://doi.org/10.3390/rs13020267 kostenfrei https://doaj.org/article/c6cfe4eb8d754b7dbef73c85f419aee1 kostenfrei https://www.mdpi.com/2072-4292/13/2/267 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 2, p 267 |
allfieldsSound |
10.3390/rs13020267 doi (DE-627)DOAJ015159493 (DE-599)DOAJc6cfe4eb8d754b7dbef73c85f419aee1 DE-627 ger DE-627 rakwb eng M. Brooke Rose verfasserin aut Characterizing Forest Dynamics with Landsat-Derived Phenology Curves 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change. forest recovery Landsat vegetation phenology Science Q Nicholas N. Nagle verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 2, p 267 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:2, p 267 https://doi.org/10.3390/rs13020267 kostenfrei https://doaj.org/article/c6cfe4eb8d754b7dbef73c85f419aee1 kostenfrei https://www.mdpi.com/2072-4292/13/2/267 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 2, p 267 |
language |
English |
source |
In Remote Sensing 13(2021), 2, p 267 volume:13 year:2021 number:2, p 267 |
sourceStr |
In Remote Sensing 13(2021), 2, p 267 volume:13 year:2021 number:2, p 267 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
forest recovery Landsat vegetation phenology Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
M. Brooke Rose @@aut@@ Nicholas N. Nagle @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ015159493 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015159493</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414075946.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13020267</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015159493</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc6cfe4eb8d754b7dbef73c85f419aee1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Brooke Rose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterizing Forest Dynamics with Landsat-Derived Phenology Curves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forest recovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landsat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation phenology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nicholas N. Nagle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 2, p 267</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 267</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13020267</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c6cfe4eb8d754b7dbef73c85f419aee1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/2/267</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 267</subfield></datafield></record></collection>
|
author |
M. Brooke Rose |
spellingShingle |
M. Brooke Rose misc forest recovery misc Landsat misc vegetation phenology misc Science misc Q Characterizing Forest Dynamics with Landsat-Derived Phenology Curves |
authorStr |
M. Brooke Rose |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Characterizing Forest Dynamics with Landsat-Derived Phenology Curves forest recovery Landsat vegetation phenology |
topic |
misc forest recovery misc Landsat misc vegetation phenology misc Science misc Q |
topic_unstemmed |
misc forest recovery misc Landsat misc vegetation phenology misc Science misc Q |
topic_browse |
misc forest recovery misc Landsat misc vegetation phenology misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Characterizing Forest Dynamics with Landsat-Derived Phenology Curves |
ctrlnum |
(DE-627)DOAJ015159493 (DE-599)DOAJc6cfe4eb8d754b7dbef73c85f419aee1 |
title_full |
Characterizing Forest Dynamics with Landsat-Derived Phenology Curves |
author_sort |
M. Brooke Rose |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
M. Brooke Rose Nicholas N. Nagle |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
M. Brooke Rose |
doi_str_mv |
10.3390/rs13020267 |
author2-role |
verfasserin |
title_sort |
characterizing forest dynamics with landsat-derived phenology curves |
title_auth |
Characterizing Forest Dynamics with Landsat-Derived Phenology Curves |
abstract |
Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change. |
abstractGer |
Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change. |
abstract_unstemmed |
Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
2, p 267 |
title_short |
Characterizing Forest Dynamics with Landsat-Derived Phenology Curves |
url |
https://doi.org/10.3390/rs13020267 https://doaj.org/article/c6cfe4eb8d754b7dbef73c85f419aee1 https://www.mdpi.com/2072-4292/13/2/267 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Nicholas N. Nagle |
author2Str |
Nicholas N. Nagle |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs13020267 |
up_date |
2024-07-03T13:19:37.397Z |
_version_ |
1803564118082322432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015159493</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414075946.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13020267</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015159493</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc6cfe4eb8d754b7dbef73c85f419aee1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Brooke Rose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterizing Forest Dynamics with Landsat-Derived Phenology Curves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Landsat is among the most popular satellites used for forest change assessments. Traditionally, Landsat data users relied on annual or biennial images to measure forest recovery after disturbance, a process that is difficult to monitor at broad scales. With the availability of free Landsat data, intra-annual change analyses are now possible. Phenology, the timing of cyclical vegetation events, can be estimated using indices derived from intra-annual remote sensing data and used to classify different vegetation types after a disturbance. We used a smoothed harmonic modelling approach to estimate NDVI and NBR phenology patterns in pre- and post-fire Landsat sample pixels for two forest groups in South Carolina, using nearby unburned samples as an approximate control group. These methods take advantage of all available images collected by Landsat 5, 7, and 8 for the study area. We found that within burned samples, there were differences in phenology for the two forest groups, while the unburned samples showed no forest group differences. Phenology patterns also differed based on fire severity. These methods take advantage of the freely available Landsat archive and can be used to characterize intra-annual fluctuations in vegetation following a variety of disturbances in the southeastern U.S. and other regions. Our approach builds on other harmonic approaches that use the Landsat archive to detect forest change, such as the Continuous Change Detection and Classification (CCDC) algorithm, and provides a tool to describe post-disturbance forest change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forest recovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landsat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation phenology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nicholas N. Nagle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 2, p 267</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 267</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13020267</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c6cfe4eb8d754b7dbef73c85f419aee1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/2/267</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 267</subfield></datafield></record></collection>
|
score |
7.399083 |