Current trends in evolutionary multi-objective optimization
In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully fo...
Ausführliche Beschreibung
Autor*in: |
Deb Kalyanmoy [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Übergeordnetes Werk: |
In: International Journal for Simulation and Multidisciplinary Design Optimization - EDP Sciences, 2016, 1(2007), 1, Seite 8 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2007 ; number:1 ; pages:8 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1051/ijsmdo:2007001 |
---|
Katalog-ID: |
DOAJ015259099 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ015259099 | ||
003 | DE-627 | ||
005 | 20230310073543.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2007 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/ijsmdo:2007001 |2 doi | |
035 | |a (DE-627)DOAJ015259099 | ||
035 | |a (DE-599)DOAJ4e7cb25952f14866b34ffbe5639628e0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T55.4-60.8 | |
050 | 0 | |a T11.95-12.5 | |
100 | 0 | |a Deb Kalyanmoy |e verfasserin |4 aut | |
245 | 1 | 0 | |a Current trends in evolutionary multi-objective optimization |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique. | ||
653 | 0 | |a Industrial engineering. Management engineering | |
653 | 0 | |a Industrial directories | |
773 | 0 | 8 | |i In |t International Journal for Simulation and Multidisciplinary Design Optimization |d EDP Sciences, 2016 |g 1(2007), 1, Seite 8 |w (DE-627)559078005 |w (DE-600)2411337-2 |x 17796288 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2007 |g number:1 |g pages:8 |
856 | 4 | 0 | |u https://doi.org/10.1051/ijsmdo:2007001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4e7cb25952f14866b34ffbe5639628e0 |z kostenfrei |
856 | 4 | 0 | |u https://www.ijsmdo.org/articles/smdo/pdf/2007/01/smdo0703.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1779-627X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1779-6288 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 1 |j 2007 |e 1 |h 8 |
author_variant |
d k dk |
---|---|
matchkey_str |
article:17796288:2007----::urntedieouinrmlibet |
hierarchy_sort_str |
2007 |
callnumber-subject-code |
T |
publishDate |
2007 |
allfields |
10.1051/ijsmdo:2007001 doi (DE-627)DOAJ015259099 (DE-599)DOAJ4e7cb25952f14866b34ffbe5639628e0 DE-627 ger DE-627 rakwb eng T55.4-60.8 T11.95-12.5 Deb Kalyanmoy verfasserin aut Current trends in evolutionary multi-objective optimization 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique. Industrial engineering. Management engineering Industrial directories In International Journal for Simulation and Multidisciplinary Design Optimization EDP Sciences, 2016 1(2007), 1, Seite 8 (DE-627)559078005 (DE-600)2411337-2 17796288 nnns volume:1 year:2007 number:1 pages:8 https://doi.org/10.1051/ijsmdo:2007001 kostenfrei https://doaj.org/article/4e7cb25952f14866b34ffbe5639628e0 kostenfrei https://www.ijsmdo.org/articles/smdo/pdf/2007/01/smdo0703.pdf kostenfrei https://doaj.org/toc/1779-627X Journal toc kostenfrei https://doaj.org/toc/1779-6288 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2007 1 8 |
spelling |
10.1051/ijsmdo:2007001 doi (DE-627)DOAJ015259099 (DE-599)DOAJ4e7cb25952f14866b34ffbe5639628e0 DE-627 ger DE-627 rakwb eng T55.4-60.8 T11.95-12.5 Deb Kalyanmoy verfasserin aut Current trends in evolutionary multi-objective optimization 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique. Industrial engineering. Management engineering Industrial directories In International Journal for Simulation and Multidisciplinary Design Optimization EDP Sciences, 2016 1(2007), 1, Seite 8 (DE-627)559078005 (DE-600)2411337-2 17796288 nnns volume:1 year:2007 number:1 pages:8 https://doi.org/10.1051/ijsmdo:2007001 kostenfrei https://doaj.org/article/4e7cb25952f14866b34ffbe5639628e0 kostenfrei https://www.ijsmdo.org/articles/smdo/pdf/2007/01/smdo0703.pdf kostenfrei https://doaj.org/toc/1779-627X Journal toc kostenfrei https://doaj.org/toc/1779-6288 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2007 1 8 |
allfields_unstemmed |
10.1051/ijsmdo:2007001 doi (DE-627)DOAJ015259099 (DE-599)DOAJ4e7cb25952f14866b34ffbe5639628e0 DE-627 ger DE-627 rakwb eng T55.4-60.8 T11.95-12.5 Deb Kalyanmoy verfasserin aut Current trends in evolutionary multi-objective optimization 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique. Industrial engineering. Management engineering Industrial directories In International Journal for Simulation and Multidisciplinary Design Optimization EDP Sciences, 2016 1(2007), 1, Seite 8 (DE-627)559078005 (DE-600)2411337-2 17796288 nnns volume:1 year:2007 number:1 pages:8 https://doi.org/10.1051/ijsmdo:2007001 kostenfrei https://doaj.org/article/4e7cb25952f14866b34ffbe5639628e0 kostenfrei https://www.ijsmdo.org/articles/smdo/pdf/2007/01/smdo0703.pdf kostenfrei https://doaj.org/toc/1779-627X Journal toc kostenfrei https://doaj.org/toc/1779-6288 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2007 1 8 |
allfieldsGer |
10.1051/ijsmdo:2007001 doi (DE-627)DOAJ015259099 (DE-599)DOAJ4e7cb25952f14866b34ffbe5639628e0 DE-627 ger DE-627 rakwb eng T55.4-60.8 T11.95-12.5 Deb Kalyanmoy verfasserin aut Current trends in evolutionary multi-objective optimization 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique. Industrial engineering. Management engineering Industrial directories In International Journal for Simulation and Multidisciplinary Design Optimization EDP Sciences, 2016 1(2007), 1, Seite 8 (DE-627)559078005 (DE-600)2411337-2 17796288 nnns volume:1 year:2007 number:1 pages:8 https://doi.org/10.1051/ijsmdo:2007001 kostenfrei https://doaj.org/article/4e7cb25952f14866b34ffbe5639628e0 kostenfrei https://www.ijsmdo.org/articles/smdo/pdf/2007/01/smdo0703.pdf kostenfrei https://doaj.org/toc/1779-627X Journal toc kostenfrei https://doaj.org/toc/1779-6288 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2007 1 8 |
allfieldsSound |
10.1051/ijsmdo:2007001 doi (DE-627)DOAJ015259099 (DE-599)DOAJ4e7cb25952f14866b34ffbe5639628e0 DE-627 ger DE-627 rakwb eng T55.4-60.8 T11.95-12.5 Deb Kalyanmoy verfasserin aut Current trends in evolutionary multi-objective optimization 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique. Industrial engineering. Management engineering Industrial directories In International Journal for Simulation and Multidisciplinary Design Optimization EDP Sciences, 2016 1(2007), 1, Seite 8 (DE-627)559078005 (DE-600)2411337-2 17796288 nnns volume:1 year:2007 number:1 pages:8 https://doi.org/10.1051/ijsmdo:2007001 kostenfrei https://doaj.org/article/4e7cb25952f14866b34ffbe5639628e0 kostenfrei https://www.ijsmdo.org/articles/smdo/pdf/2007/01/smdo0703.pdf kostenfrei https://doaj.org/toc/1779-627X Journal toc kostenfrei https://doaj.org/toc/1779-6288 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2007 1 8 |
language |
English |
source |
In International Journal for Simulation and Multidisciplinary Design Optimization 1(2007), 1, Seite 8 volume:1 year:2007 number:1 pages:8 |
sourceStr |
In International Journal for Simulation and Multidisciplinary Design Optimization 1(2007), 1, Seite 8 volume:1 year:2007 number:1 pages:8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Industrial engineering. Management engineering Industrial directories |
isfreeaccess_bool |
true |
container_title |
International Journal for Simulation and Multidisciplinary Design Optimization |
authorswithroles_txt_mv |
Deb Kalyanmoy @@aut@@ |
publishDateDaySort_date |
2007-01-01T00:00:00Z |
hierarchy_top_id |
559078005 |
id |
DOAJ015259099 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015259099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310073543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/ijsmdo:2007001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015259099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4e7cb25952f14866b34ffbe5639628e0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T11.95-12.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Deb Kalyanmoy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Current trends in evolutionary multi-objective optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial engineering. Management engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial directories</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal for Simulation and Multidisciplinary Design Optimization</subfield><subfield code="d">EDP Sciences, 2016</subfield><subfield code="g">1(2007), 1, Seite 8</subfield><subfield code="w">(DE-627)559078005</subfield><subfield code="w">(DE-600)2411337-2</subfield><subfield code="x">17796288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/ijsmdo:2007001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4e7cb25952f14866b34ffbe5639628e0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ijsmdo.org/articles/smdo/pdf/2007/01/smdo0703.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1779-627X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1779-6288</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="h">8</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Deb Kalyanmoy |
spellingShingle |
Deb Kalyanmoy misc T55.4-60.8 misc T11.95-12.5 misc Industrial engineering. Management engineering misc Industrial directories Current trends in evolutionary multi-objective optimization |
authorStr |
Deb Kalyanmoy |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)559078005 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T55 |
illustrated |
Not Illustrated |
issn |
17796288 |
topic_title |
T55.4-60.8 T11.95-12.5 Current trends in evolutionary multi-objective optimization |
topic |
misc T55.4-60.8 misc T11.95-12.5 misc Industrial engineering. Management engineering misc Industrial directories |
topic_unstemmed |
misc T55.4-60.8 misc T11.95-12.5 misc Industrial engineering. Management engineering misc Industrial directories |
topic_browse |
misc T55.4-60.8 misc T11.95-12.5 misc Industrial engineering. Management engineering misc Industrial directories |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal for Simulation and Multidisciplinary Design Optimization |
hierarchy_parent_id |
559078005 |
hierarchy_top_title |
International Journal for Simulation and Multidisciplinary Design Optimization |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)559078005 (DE-600)2411337-2 |
title |
Current trends in evolutionary multi-objective optimization |
ctrlnum |
(DE-627)DOAJ015259099 (DE-599)DOAJ4e7cb25952f14866b34ffbe5639628e0 |
title_full |
Current trends in evolutionary multi-objective optimization |
author_sort |
Deb Kalyanmoy |
journal |
International Journal for Simulation and Multidisciplinary Design Optimization |
journalStr |
International Journal for Simulation and Multidisciplinary Design Optimization |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
8 |
author_browse |
Deb Kalyanmoy |
container_volume |
1 |
class |
T55.4-60.8 T11.95-12.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Deb Kalyanmoy |
doi_str_mv |
10.1051/ijsmdo:2007001 |
title_sort |
current trends in evolutionary multi-objective optimization |
callnumber |
T55.4-60.8 |
title_auth |
Current trends in evolutionary multi-objective optimization |
abstract |
In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique. |
abstractGer |
In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique. |
abstract_unstemmed |
In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Current trends in evolutionary multi-objective optimization |
url |
https://doi.org/10.1051/ijsmdo:2007001 https://doaj.org/article/4e7cb25952f14866b34ffbe5639628e0 https://www.ijsmdo.org/articles/smdo/pdf/2007/01/smdo0703.pdf https://doaj.org/toc/1779-627X https://doaj.org/toc/1779-6288 |
remote_bool |
true |
ppnlink |
559078005 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/ijsmdo:2007001 |
callnumber-a |
T55.4-60.8 |
up_date |
2024-07-03T13:55:33.430Z |
_version_ |
1803566378843635712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015259099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310073543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/ijsmdo:2007001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015259099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4e7cb25952f14866b34ffbe5639628e0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T11.95-12.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Deb Kalyanmoy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Current trends in evolutionary multi-objective optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has established itself as a mature field of research and application with an extensive literature, many commercial softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four times so far since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this paper, we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization problems efficiently, and in various interesting application domains which were not possible to be solved adequately due to the lack of a suitable solution technique.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial engineering. Management engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial directories</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal for Simulation and Multidisciplinary Design Optimization</subfield><subfield code="d">EDP Sciences, 2016</subfield><subfield code="g">1(2007), 1, Seite 8</subfield><subfield code="w">(DE-627)559078005</subfield><subfield code="w">(DE-600)2411337-2</subfield><subfield code="x">17796288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/ijsmdo:2007001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4e7cb25952f14866b34ffbe5639628e0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ijsmdo.org/articles/smdo/pdf/2007/01/smdo0703.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1779-627X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1779-6288</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="h">8</subfield></datafield></record></collection>
|
score |
7.400467 |