Blind Image Quality Assessment With Joint Entropy Degradation
Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents...
Ausführliche Beschreibung
Autor*in: |
Weiping Ji [verfasserIn] Jinjian Wu [verfasserIn] Man Zhang [verfasserIn] Zuozhi Liu [verfasserIn] Guangming Shi [verfasserIn] Xuemei Xie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 30925-30936 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:30925-30936 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2901063 |
---|
Katalog-ID: |
DOAJ01532138X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ01532138X | ||
003 | DE-627 | ||
005 | 20230310073833.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2901063 |2 doi | |
035 | |a (DE-627)DOAJ01532138X | ||
035 | |a (DE-599)DOAJ6795a9e0bf9c417e8f7711c4f2acca70 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Weiping Ji |e verfasserin |4 aut | |
245 | 1 | 0 | |a Blind Image Quality Assessment With Joint Entropy Degradation |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods. | ||
650 | 4 | |a Blind image quality assessment (BIQA) | |
650 | 4 | |a local receptive field | |
650 | 4 | |a joint visual entropy | |
650 | 4 | |a joint probability distribution | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jinjian Wu |e verfasserin |4 aut | |
700 | 0 | |a Man Zhang |e verfasserin |4 aut | |
700 | 0 | |a Zuozhi Liu |e verfasserin |4 aut | |
700 | 0 | |a Guangming Shi |e verfasserin |4 aut | |
700 | 0 | |a Xuemei Xie |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 30925-30936 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:30925-30936 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2901063 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6795a9e0bf9c417e8f7711c4f2acca70 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8666985/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 30925-30936 |
author_variant |
w j wj j w jw m z mz z l zl g s gs x x xx |
---|---|
matchkey_str |
article:21693536:2019----::lniaeultassmnwtjitn |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2901063 doi (DE-627)DOAJ01532138X (DE-599)DOAJ6795a9e0bf9c417e8f7711c4f2acca70 DE-627 ger DE-627 rakwb eng TK1-9971 Weiping Ji verfasserin aut Blind Image Quality Assessment With Joint Entropy Degradation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods. Blind image quality assessment (BIQA) local receptive field joint visual entropy joint probability distribution Electrical engineering. Electronics. Nuclear engineering Jinjian Wu verfasserin aut Man Zhang verfasserin aut Zuozhi Liu verfasserin aut Guangming Shi verfasserin aut Xuemei Xie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 30925-30936 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:30925-30936 https://doi.org/10.1109/ACCESS.2019.2901063 kostenfrei https://doaj.org/article/6795a9e0bf9c417e8f7711c4f2acca70 kostenfrei https://ieeexplore.ieee.org/document/8666985/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 30925-30936 |
spelling |
10.1109/ACCESS.2019.2901063 doi (DE-627)DOAJ01532138X (DE-599)DOAJ6795a9e0bf9c417e8f7711c4f2acca70 DE-627 ger DE-627 rakwb eng TK1-9971 Weiping Ji verfasserin aut Blind Image Quality Assessment With Joint Entropy Degradation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods. Blind image quality assessment (BIQA) local receptive field joint visual entropy joint probability distribution Electrical engineering. Electronics. Nuclear engineering Jinjian Wu verfasserin aut Man Zhang verfasserin aut Zuozhi Liu verfasserin aut Guangming Shi verfasserin aut Xuemei Xie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 30925-30936 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:30925-30936 https://doi.org/10.1109/ACCESS.2019.2901063 kostenfrei https://doaj.org/article/6795a9e0bf9c417e8f7711c4f2acca70 kostenfrei https://ieeexplore.ieee.org/document/8666985/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 30925-30936 |
allfields_unstemmed |
10.1109/ACCESS.2019.2901063 doi (DE-627)DOAJ01532138X (DE-599)DOAJ6795a9e0bf9c417e8f7711c4f2acca70 DE-627 ger DE-627 rakwb eng TK1-9971 Weiping Ji verfasserin aut Blind Image Quality Assessment With Joint Entropy Degradation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods. Blind image quality assessment (BIQA) local receptive field joint visual entropy joint probability distribution Electrical engineering. Electronics. Nuclear engineering Jinjian Wu verfasserin aut Man Zhang verfasserin aut Zuozhi Liu verfasserin aut Guangming Shi verfasserin aut Xuemei Xie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 30925-30936 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:30925-30936 https://doi.org/10.1109/ACCESS.2019.2901063 kostenfrei https://doaj.org/article/6795a9e0bf9c417e8f7711c4f2acca70 kostenfrei https://ieeexplore.ieee.org/document/8666985/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 30925-30936 |
allfieldsGer |
10.1109/ACCESS.2019.2901063 doi (DE-627)DOAJ01532138X (DE-599)DOAJ6795a9e0bf9c417e8f7711c4f2acca70 DE-627 ger DE-627 rakwb eng TK1-9971 Weiping Ji verfasserin aut Blind Image Quality Assessment With Joint Entropy Degradation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods. Blind image quality assessment (BIQA) local receptive field joint visual entropy joint probability distribution Electrical engineering. Electronics. Nuclear engineering Jinjian Wu verfasserin aut Man Zhang verfasserin aut Zuozhi Liu verfasserin aut Guangming Shi verfasserin aut Xuemei Xie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 30925-30936 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:30925-30936 https://doi.org/10.1109/ACCESS.2019.2901063 kostenfrei https://doaj.org/article/6795a9e0bf9c417e8f7711c4f2acca70 kostenfrei https://ieeexplore.ieee.org/document/8666985/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 30925-30936 |
allfieldsSound |
10.1109/ACCESS.2019.2901063 doi (DE-627)DOAJ01532138X (DE-599)DOAJ6795a9e0bf9c417e8f7711c4f2acca70 DE-627 ger DE-627 rakwb eng TK1-9971 Weiping Ji verfasserin aut Blind Image Quality Assessment With Joint Entropy Degradation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods. Blind image quality assessment (BIQA) local receptive field joint visual entropy joint probability distribution Electrical engineering. Electronics. Nuclear engineering Jinjian Wu verfasserin aut Man Zhang verfasserin aut Zuozhi Liu verfasserin aut Guangming Shi verfasserin aut Xuemei Xie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 30925-30936 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:30925-30936 https://doi.org/10.1109/ACCESS.2019.2901063 kostenfrei https://doaj.org/article/6795a9e0bf9c417e8f7711c4f2acca70 kostenfrei https://ieeexplore.ieee.org/document/8666985/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 30925-30936 |
language |
English |
source |
In IEEE Access 7(2019), Seite 30925-30936 volume:7 year:2019 pages:30925-30936 |
sourceStr |
In IEEE Access 7(2019), Seite 30925-30936 volume:7 year:2019 pages:30925-30936 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Blind image quality assessment (BIQA) local receptive field joint visual entropy joint probability distribution Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Weiping Ji @@aut@@ Jinjian Wu @@aut@@ Man Zhang @@aut@@ Zuozhi Liu @@aut@@ Guangming Shi @@aut@@ Xuemei Xie @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ01532138X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01532138X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310073833.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2901063</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01532138X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6795a9e0bf9c417e8f7711c4f2acca70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Weiping Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blind Image Quality Assessment With Joint Entropy Degradation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blind image quality assessment (BIQA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local receptive field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">joint visual entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">joint probability distribution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinjian Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Man Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zuozhi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangming Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuemei Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 30925-30936</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:30925-30936</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2901063</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6795a9e0bf9c417e8f7711c4f2acca70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8666985/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">30925-30936</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Weiping Ji |
spellingShingle |
Weiping Ji misc TK1-9971 misc Blind image quality assessment (BIQA) misc local receptive field misc joint visual entropy misc joint probability distribution misc Electrical engineering. Electronics. Nuclear engineering Blind Image Quality Assessment With Joint Entropy Degradation |
authorStr |
Weiping Ji |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Blind Image Quality Assessment With Joint Entropy Degradation Blind image quality assessment (BIQA) local receptive field joint visual entropy joint probability distribution |
topic |
misc TK1-9971 misc Blind image quality assessment (BIQA) misc local receptive field misc joint visual entropy misc joint probability distribution misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Blind image quality assessment (BIQA) misc local receptive field misc joint visual entropy misc joint probability distribution misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Blind image quality assessment (BIQA) misc local receptive field misc joint visual entropy misc joint probability distribution misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Blind Image Quality Assessment With Joint Entropy Degradation |
ctrlnum |
(DE-627)DOAJ01532138X (DE-599)DOAJ6795a9e0bf9c417e8f7711c4f2acca70 |
title_full |
Blind Image Quality Assessment With Joint Entropy Degradation |
author_sort |
Weiping Ji |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
30925 |
author_browse |
Weiping Ji Jinjian Wu Man Zhang Zuozhi Liu Guangming Shi Xuemei Xie |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Weiping Ji |
doi_str_mv |
10.1109/ACCESS.2019.2901063 |
author2-role |
verfasserin |
title_sort |
blind image quality assessment with joint entropy degradation |
callnumber |
TK1-9971 |
title_auth |
Blind Image Quality Assessment With Joint Entropy Degradation |
abstract |
Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods. |
abstractGer |
Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods. |
abstract_unstemmed |
Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Blind Image Quality Assessment With Joint Entropy Degradation |
url |
https://doi.org/10.1109/ACCESS.2019.2901063 https://doaj.org/article/6795a9e0bf9c417e8f7711c4f2acca70 https://ieeexplore.ieee.org/document/8666985/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jinjian Wu Man Zhang Zuozhi Liu Guangming Shi Xuemei Xie |
author2Str |
Jinjian Wu Man Zhang Zuozhi Liu Guangming Shi Xuemei Xie |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2901063 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T14:17:23.614Z |
_version_ |
1803567752666939392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01532138X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310073833.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2901063</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01532138X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6795a9e0bf9c417e8f7711c4f2acca70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Weiping Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blind Image Quality Assessment With Joint Entropy Degradation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Blind image quality assessment (BIQA) aims to evaluate the quality of an image without pristine image objectively, which is highly desired in many perception-oriented image processing systems. Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents of an image suffer from individual degradations by different types and different levels of distortions, which makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the simple cells in the local receptive field can be characterized as being spatially localized and oriented, then the local intensity, gradient, and orientation features are extracted to represent the visual contents of an image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions. Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated. Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed method has superior performance than other state-of-the-art BIQA methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blind image quality assessment (BIQA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local receptive field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">joint visual entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">joint probability distribution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinjian Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Man Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zuozhi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangming Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuemei Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 30925-30936</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:30925-30936</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2901063</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6795a9e0bf9c417e8f7711c4f2acca70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8666985/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">30925-30936</subfield></datafield></record></collection>
|
score |
7.399888 |