A review of bipolar magnetic semiconductors from theoretical aspects
Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carrie...
Ausführliche Beschreibung
Autor*in: |
Junyao Li [verfasserIn] Xingxing Li [verfasserIn] Jinlong Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Fundamental Research - KeAi Communications Co. Ltd., 2021, 2(2022), 4, Seite 511-521 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2022 ; number:4 ; pages:511-521 |
Links: |
---|
DOI / URN: |
10.1016/j.fmre.2022.04.002 |
---|
Katalog-ID: |
DOAJ015630307 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ015630307 | ||
003 | DE-627 | ||
005 | 20230311014254.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fmre.2022.04.002 |2 doi | |
035 | |a (DE-627)DOAJ015630307 | ||
035 | |a (DE-599)DOAJe0029a7b49a74ccc9b6a119c915154df | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a Q1-390 | |
100 | 0 | |a Junyao Li |e verfasserin |4 aut | |
245 | 1 | 2 | |a A review of bipolar magnetic semiconductors from theoretical aspects |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development. | ||
650 | 4 | |a Spintronics | |
650 | 4 | |a First-principles | |
650 | 4 | |a Ferromagnetism | |
650 | 4 | |a Antiferromagnetism | |
650 | 4 | |a Bipolar magnetic semiconductor (BMS) | |
653 | 0 | |a Science (General) | |
700 | 0 | |a Xingxing Li |e verfasserin |4 aut | |
700 | 0 | |a Jinlong Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Fundamental Research |d KeAi Communications Co. Ltd., 2021 |g 2(2022), 4, Seite 511-521 |w (DE-627)1753156513 |w (DE-600)3059367-0 |x 26673258 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2022 |g number:4 |g pages:511-521 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.fmre.2022.04.002 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e0029a7b49a74ccc9b6a119c915154df |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S266732582200173X |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2667-3258 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2022 |e 4 |h 511-521 |
author_variant |
j l jl x l xl j y jy |
---|---|
matchkey_str |
article:26673258:2022----::rveobplrantceiodcosrmh |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
Q |
publishDate |
2022 |
allfields |
10.1016/j.fmre.2022.04.002 doi (DE-627)DOAJ015630307 (DE-599)DOAJe0029a7b49a74ccc9b6a119c915154df DE-627 ger DE-627 rakwb eng Q1-390 Junyao Li verfasserin aut A review of bipolar magnetic semiconductors from theoretical aspects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development. Spintronics First-principles Ferromagnetism Antiferromagnetism Bipolar magnetic semiconductor (BMS) Science (General) Xingxing Li verfasserin aut Jinlong Yang verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 2(2022), 4, Seite 511-521 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:2 year:2022 number:4 pages:511-521 https://doi.org/10.1016/j.fmre.2022.04.002 kostenfrei https://doaj.org/article/e0029a7b49a74ccc9b6a119c915154df kostenfrei http://www.sciencedirect.com/science/article/pii/S266732582200173X kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 4 511-521 |
spelling |
10.1016/j.fmre.2022.04.002 doi (DE-627)DOAJ015630307 (DE-599)DOAJe0029a7b49a74ccc9b6a119c915154df DE-627 ger DE-627 rakwb eng Q1-390 Junyao Li verfasserin aut A review of bipolar magnetic semiconductors from theoretical aspects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development. Spintronics First-principles Ferromagnetism Antiferromagnetism Bipolar magnetic semiconductor (BMS) Science (General) Xingxing Li verfasserin aut Jinlong Yang verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 2(2022), 4, Seite 511-521 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:2 year:2022 number:4 pages:511-521 https://doi.org/10.1016/j.fmre.2022.04.002 kostenfrei https://doaj.org/article/e0029a7b49a74ccc9b6a119c915154df kostenfrei http://www.sciencedirect.com/science/article/pii/S266732582200173X kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 4 511-521 |
allfields_unstemmed |
10.1016/j.fmre.2022.04.002 doi (DE-627)DOAJ015630307 (DE-599)DOAJe0029a7b49a74ccc9b6a119c915154df DE-627 ger DE-627 rakwb eng Q1-390 Junyao Li verfasserin aut A review of bipolar magnetic semiconductors from theoretical aspects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development. Spintronics First-principles Ferromagnetism Antiferromagnetism Bipolar magnetic semiconductor (BMS) Science (General) Xingxing Li verfasserin aut Jinlong Yang verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 2(2022), 4, Seite 511-521 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:2 year:2022 number:4 pages:511-521 https://doi.org/10.1016/j.fmre.2022.04.002 kostenfrei https://doaj.org/article/e0029a7b49a74ccc9b6a119c915154df kostenfrei http://www.sciencedirect.com/science/article/pii/S266732582200173X kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 4 511-521 |
allfieldsGer |
10.1016/j.fmre.2022.04.002 doi (DE-627)DOAJ015630307 (DE-599)DOAJe0029a7b49a74ccc9b6a119c915154df DE-627 ger DE-627 rakwb eng Q1-390 Junyao Li verfasserin aut A review of bipolar magnetic semiconductors from theoretical aspects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development. Spintronics First-principles Ferromagnetism Antiferromagnetism Bipolar magnetic semiconductor (BMS) Science (General) Xingxing Li verfasserin aut Jinlong Yang verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 2(2022), 4, Seite 511-521 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:2 year:2022 number:4 pages:511-521 https://doi.org/10.1016/j.fmre.2022.04.002 kostenfrei https://doaj.org/article/e0029a7b49a74ccc9b6a119c915154df kostenfrei http://www.sciencedirect.com/science/article/pii/S266732582200173X kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 4 511-521 |
allfieldsSound |
10.1016/j.fmre.2022.04.002 doi (DE-627)DOAJ015630307 (DE-599)DOAJe0029a7b49a74ccc9b6a119c915154df DE-627 ger DE-627 rakwb eng Q1-390 Junyao Li verfasserin aut A review of bipolar magnetic semiconductors from theoretical aspects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development. Spintronics First-principles Ferromagnetism Antiferromagnetism Bipolar magnetic semiconductor (BMS) Science (General) Xingxing Li verfasserin aut Jinlong Yang verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 2(2022), 4, Seite 511-521 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:2 year:2022 number:4 pages:511-521 https://doi.org/10.1016/j.fmre.2022.04.002 kostenfrei https://doaj.org/article/e0029a7b49a74ccc9b6a119c915154df kostenfrei http://www.sciencedirect.com/science/article/pii/S266732582200173X kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 4 511-521 |
language |
English |
source |
In Fundamental Research 2(2022), 4, Seite 511-521 volume:2 year:2022 number:4 pages:511-521 |
sourceStr |
In Fundamental Research 2(2022), 4, Seite 511-521 volume:2 year:2022 number:4 pages:511-521 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Spintronics First-principles Ferromagnetism Antiferromagnetism Bipolar magnetic semiconductor (BMS) Science (General) |
isfreeaccess_bool |
true |
container_title |
Fundamental Research |
authorswithroles_txt_mv |
Junyao Li @@aut@@ Xingxing Li @@aut@@ Jinlong Yang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1753156513 |
id |
DOAJ015630307 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015630307</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311014254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fmre.2022.04.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015630307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0029a7b49a74ccc9b6a119c915154df</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Junyao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A review of bipolar magnetic semiconductors from theoretical aspects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First-principles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferromagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antiferromagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar magnetic semiconductor (BMS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingxing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlong Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fundamental Research</subfield><subfield code="d">KeAi Communications Co. Ltd., 2021</subfield><subfield code="g">2(2022), 4, Seite 511-521</subfield><subfield code="w">(DE-627)1753156513</subfield><subfield code="w">(DE-600)3059367-0</subfield><subfield code="x">26673258</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:511-521</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fmre.2022.04.002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0029a7b49a74ccc9b6a119c915154df</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S266732582200173X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2667-3258</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">511-521</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Junyao Li |
spellingShingle |
Junyao Li misc Q1-390 misc Spintronics misc First-principles misc Ferromagnetism misc Antiferromagnetism misc Bipolar magnetic semiconductor (BMS) misc Science (General) A review of bipolar magnetic semiconductors from theoretical aspects |
authorStr |
Junyao Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1753156513 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
Q1-390 |
illustrated |
Not Illustrated |
issn |
26673258 |
topic_title |
Q1-390 A review of bipolar magnetic semiconductors from theoretical aspects Spintronics First-principles Ferromagnetism Antiferromagnetism Bipolar magnetic semiconductor (BMS) |
topic |
misc Q1-390 misc Spintronics misc First-principles misc Ferromagnetism misc Antiferromagnetism misc Bipolar magnetic semiconductor (BMS) misc Science (General) |
topic_unstemmed |
misc Q1-390 misc Spintronics misc First-principles misc Ferromagnetism misc Antiferromagnetism misc Bipolar magnetic semiconductor (BMS) misc Science (General) |
topic_browse |
misc Q1-390 misc Spintronics misc First-principles misc Ferromagnetism misc Antiferromagnetism misc Bipolar magnetic semiconductor (BMS) misc Science (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fundamental Research |
hierarchy_parent_id |
1753156513 |
hierarchy_top_title |
Fundamental Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1753156513 (DE-600)3059367-0 |
title |
A review of bipolar magnetic semiconductors from theoretical aspects |
ctrlnum |
(DE-627)DOAJ015630307 (DE-599)DOAJe0029a7b49a74ccc9b6a119c915154df |
title_full |
A review of bipolar magnetic semiconductors from theoretical aspects |
author_sort |
Junyao Li |
journal |
Fundamental Research |
journalStr |
Fundamental Research |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
511 |
author_browse |
Junyao Li Xingxing Li Jinlong Yang |
container_volume |
2 |
class |
Q1-390 |
format_se |
Elektronische Aufsätze |
author-letter |
Junyao Li |
doi_str_mv |
10.1016/j.fmre.2022.04.002 |
author2-role |
verfasserin |
title_sort |
review of bipolar magnetic semiconductors from theoretical aspects |
callnumber |
Q1-390 |
title_auth |
A review of bipolar magnetic semiconductors from theoretical aspects |
abstract |
Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development. |
abstractGer |
Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development. |
abstract_unstemmed |
Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
A review of bipolar magnetic semiconductors from theoretical aspects |
url |
https://doi.org/10.1016/j.fmre.2022.04.002 https://doaj.org/article/e0029a7b49a74ccc9b6a119c915154df http://www.sciencedirect.com/science/article/pii/S266732582200173X https://doaj.org/toc/2667-3258 |
remote_bool |
true |
author2 |
Xingxing Li Jinlong Yang |
author2Str |
Xingxing Li Jinlong Yang |
ppnlink |
1753156513 |
callnumber-subject |
Q - General Science |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.fmre.2022.04.002 |
callnumber-a |
Q1-390 |
up_date |
2024-07-03T16:06:50.692Z |
_version_ |
1803574638741028864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015630307</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311014254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fmre.2022.04.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015630307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0029a7b49a74ccc9b6a119c915154df</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Junyao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A review of bipolar magnetic semiconductors from theoretical aspects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spintronics, which employs electrons’ spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First-principles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferromagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antiferromagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar magnetic semiconductor (BMS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingxing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlong Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fundamental Research</subfield><subfield code="d">KeAi Communications Co. Ltd., 2021</subfield><subfield code="g">2(2022), 4, Seite 511-521</subfield><subfield code="w">(DE-627)1753156513</subfield><subfield code="w">(DE-600)3059367-0</subfield><subfield code="x">26673258</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:511-521</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fmre.2022.04.002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0029a7b49a74ccc9b6a119c915154df</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S266732582200173X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2667-3258</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">511-521</subfield></datafield></record></collection>
|
score |
7.402647 |