PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images
The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Micr...
Ausführliche Beschreibung
Autor*in: |
Jiansheng Wang [verfasserIn] Yan Wang [verfasserIn] Xiang Tao [verfasserIn] Qingli Li [verfasserIn] Li Sun [verfasserIn] Jiangang Chen [verfasserIn] Mei Zhou [verfasserIn] Menghan Hu [verfasserIn] Xiufeng Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Fundamental Research - KeAi Communications Co. Ltd., 2021, 1(2021), 5, Seite 631-640 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2021 ; number:5 ; pages:631-640 |
Links: |
---|
DOI / URN: |
10.1016/j.fmre.2021.06.013 |
---|
Katalog-ID: |
DOAJ015631834 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ015631834 | ||
003 | DE-627 | ||
005 | 20230311014258.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fmre.2021.06.013 |2 doi | |
035 | |a (DE-627)DOAJ015631834 | ||
035 | |a (DE-599)DOAJdb27eb5224de4df7946759bf83f18b34 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a Q1-390 | |
100 | 0 | |a Jiansheng Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health. | ||
650 | 4 | |a Microscopic hyperspectral imaging | |
650 | 4 | |a Breast cancer | |
650 | 4 | |a Tissue microarrays | |
650 | 4 | |a Deep learning | |
653 | 0 | |a Science (General) | |
700 | 0 | |a Yan Wang |e verfasserin |4 aut | |
700 | 0 | |a Xiang Tao |e verfasserin |4 aut | |
700 | 0 | |a Qingli Li |e verfasserin |4 aut | |
700 | 0 | |a Li Sun |e verfasserin |4 aut | |
700 | 0 | |a Jiangang Chen |e verfasserin |4 aut | |
700 | 0 | |a Mei Zhou |e verfasserin |4 aut | |
700 | 0 | |a Menghan Hu |e verfasserin |4 aut | |
700 | 0 | |a Xiufeng Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Fundamental Research |d KeAi Communications Co. Ltd., 2021 |g 1(2021), 5, Seite 631-640 |w (DE-627)1753156513 |w (DE-600)3059367-0 |x 26673258 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2021 |g number:5 |g pages:631-640 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.fmre.2021.06.013 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/db27eb5224de4df7946759bf83f18b34 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2667325821001035 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2667-3258 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 1 |j 2021 |e 5 |h 631-640 |
author_variant |
j w jw y w yw x t xt q l ql l s ls j c jc m z mz m h mh x z xz |
---|---|
matchkey_str |
article:26673258:2021----::cuebsdratacretemnainrmirary |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
Q |
publishDate |
2021 |
allfields |
10.1016/j.fmre.2021.06.013 doi (DE-627)DOAJ015631834 (DE-599)DOAJdb27eb5224de4df7946759bf83f18b34 DE-627 ger DE-627 rakwb eng Q1-390 Jiansheng Wang verfasserin aut PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health. Microscopic hyperspectral imaging Breast cancer Tissue microarrays Deep learning Science (General) Yan Wang verfasserin aut Xiang Tao verfasserin aut Qingli Li verfasserin aut Li Sun verfasserin aut Jiangang Chen verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Xiufeng Zhou verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 1(2021), 5, Seite 631-640 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:1 year:2021 number:5 pages:631-640 https://doi.org/10.1016/j.fmre.2021.06.013 kostenfrei https://doaj.org/article/db27eb5224de4df7946759bf83f18b34 kostenfrei http://www.sciencedirect.com/science/article/pii/S2667325821001035 kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 5 631-640 |
spelling |
10.1016/j.fmre.2021.06.013 doi (DE-627)DOAJ015631834 (DE-599)DOAJdb27eb5224de4df7946759bf83f18b34 DE-627 ger DE-627 rakwb eng Q1-390 Jiansheng Wang verfasserin aut PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health. Microscopic hyperspectral imaging Breast cancer Tissue microarrays Deep learning Science (General) Yan Wang verfasserin aut Xiang Tao verfasserin aut Qingli Li verfasserin aut Li Sun verfasserin aut Jiangang Chen verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Xiufeng Zhou verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 1(2021), 5, Seite 631-640 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:1 year:2021 number:5 pages:631-640 https://doi.org/10.1016/j.fmre.2021.06.013 kostenfrei https://doaj.org/article/db27eb5224de4df7946759bf83f18b34 kostenfrei http://www.sciencedirect.com/science/article/pii/S2667325821001035 kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 5 631-640 |
allfields_unstemmed |
10.1016/j.fmre.2021.06.013 doi (DE-627)DOAJ015631834 (DE-599)DOAJdb27eb5224de4df7946759bf83f18b34 DE-627 ger DE-627 rakwb eng Q1-390 Jiansheng Wang verfasserin aut PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health. Microscopic hyperspectral imaging Breast cancer Tissue microarrays Deep learning Science (General) Yan Wang verfasserin aut Xiang Tao verfasserin aut Qingli Li verfasserin aut Li Sun verfasserin aut Jiangang Chen verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Xiufeng Zhou verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 1(2021), 5, Seite 631-640 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:1 year:2021 number:5 pages:631-640 https://doi.org/10.1016/j.fmre.2021.06.013 kostenfrei https://doaj.org/article/db27eb5224de4df7946759bf83f18b34 kostenfrei http://www.sciencedirect.com/science/article/pii/S2667325821001035 kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 5 631-640 |
allfieldsGer |
10.1016/j.fmre.2021.06.013 doi (DE-627)DOAJ015631834 (DE-599)DOAJdb27eb5224de4df7946759bf83f18b34 DE-627 ger DE-627 rakwb eng Q1-390 Jiansheng Wang verfasserin aut PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health. Microscopic hyperspectral imaging Breast cancer Tissue microarrays Deep learning Science (General) Yan Wang verfasserin aut Xiang Tao verfasserin aut Qingli Li verfasserin aut Li Sun verfasserin aut Jiangang Chen verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Xiufeng Zhou verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 1(2021), 5, Seite 631-640 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:1 year:2021 number:5 pages:631-640 https://doi.org/10.1016/j.fmre.2021.06.013 kostenfrei https://doaj.org/article/db27eb5224de4df7946759bf83f18b34 kostenfrei http://www.sciencedirect.com/science/article/pii/S2667325821001035 kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 5 631-640 |
allfieldsSound |
10.1016/j.fmre.2021.06.013 doi (DE-627)DOAJ015631834 (DE-599)DOAJdb27eb5224de4df7946759bf83f18b34 DE-627 ger DE-627 rakwb eng Q1-390 Jiansheng Wang verfasserin aut PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health. Microscopic hyperspectral imaging Breast cancer Tissue microarrays Deep learning Science (General) Yan Wang verfasserin aut Xiang Tao verfasserin aut Qingli Li verfasserin aut Li Sun verfasserin aut Jiangang Chen verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Xiufeng Zhou verfasserin aut In Fundamental Research KeAi Communications Co. Ltd., 2021 1(2021), 5, Seite 631-640 (DE-627)1753156513 (DE-600)3059367-0 26673258 nnns volume:1 year:2021 number:5 pages:631-640 https://doi.org/10.1016/j.fmre.2021.06.013 kostenfrei https://doaj.org/article/db27eb5224de4df7946759bf83f18b34 kostenfrei http://www.sciencedirect.com/science/article/pii/S2667325821001035 kostenfrei https://doaj.org/toc/2667-3258 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 5 631-640 |
language |
English |
source |
In Fundamental Research 1(2021), 5, Seite 631-640 volume:1 year:2021 number:5 pages:631-640 |
sourceStr |
In Fundamental Research 1(2021), 5, Seite 631-640 volume:1 year:2021 number:5 pages:631-640 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microscopic hyperspectral imaging Breast cancer Tissue microarrays Deep learning Science (General) |
isfreeaccess_bool |
true |
container_title |
Fundamental Research |
authorswithroles_txt_mv |
Jiansheng Wang @@aut@@ Yan Wang @@aut@@ Xiang Tao @@aut@@ Qingli Li @@aut@@ Li Sun @@aut@@ Jiangang Chen @@aut@@ Mei Zhou @@aut@@ Menghan Hu @@aut@@ Xiufeng Zhou @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1753156513 |
id |
DOAJ015631834 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015631834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311014258.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fmre.2021.06.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015631834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb27eb5224de4df7946759bf83f18b34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiansheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microscopic hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tissue microarrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiang Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingli Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiangang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mei Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Menghan Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiufeng Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fundamental Research</subfield><subfield code="d">KeAi Communications Co. Ltd., 2021</subfield><subfield code="g">1(2021), 5, Seite 631-640</subfield><subfield code="w">(DE-627)1753156513</subfield><subfield code="w">(DE-600)3059367-0</subfield><subfield code="x">26673258</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:631-640</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fmre.2021.06.013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db27eb5224de4df7946759bf83f18b34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2667325821001035</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2667-3258</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="h">631-640</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jiansheng Wang |
spellingShingle |
Jiansheng Wang misc Q1-390 misc Microscopic hyperspectral imaging misc Breast cancer misc Tissue microarrays misc Deep learning misc Science (General) PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images |
authorStr |
Jiansheng Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1753156513 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
Q1-390 |
illustrated |
Not Illustrated |
issn |
26673258 |
topic_title |
Q1-390 PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images Microscopic hyperspectral imaging Breast cancer Tissue microarrays Deep learning |
topic |
misc Q1-390 misc Microscopic hyperspectral imaging misc Breast cancer misc Tissue microarrays misc Deep learning misc Science (General) |
topic_unstemmed |
misc Q1-390 misc Microscopic hyperspectral imaging misc Breast cancer misc Tissue microarrays misc Deep learning misc Science (General) |
topic_browse |
misc Q1-390 misc Microscopic hyperspectral imaging misc Breast cancer misc Tissue microarrays misc Deep learning misc Science (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fundamental Research |
hierarchy_parent_id |
1753156513 |
hierarchy_top_title |
Fundamental Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1753156513 (DE-600)3059367-0 |
title |
PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images |
ctrlnum |
(DE-627)DOAJ015631834 (DE-599)DOAJdb27eb5224de4df7946759bf83f18b34 |
title_full |
PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images |
author_sort |
Jiansheng Wang |
journal |
Fundamental Research |
journalStr |
Fundamental Research |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
631 |
author_browse |
Jiansheng Wang Yan Wang Xiang Tao Qingli Li Li Sun Jiangang Chen Mei Zhou Menghan Hu Xiufeng Zhou |
container_volume |
1 |
class |
Q1-390 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiansheng Wang |
doi_str_mv |
10.1016/j.fmre.2021.06.013 |
author2-role |
verfasserin |
title_sort |
pca-u-net based breast cancer nest segmentation from microarray hyperspectral images |
callnumber |
Q1-390 |
title_auth |
PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images |
abstract |
The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health. |
abstractGer |
The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health. |
abstract_unstemmed |
The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images |
url |
https://doi.org/10.1016/j.fmre.2021.06.013 https://doaj.org/article/db27eb5224de4df7946759bf83f18b34 http://www.sciencedirect.com/science/article/pii/S2667325821001035 https://doaj.org/toc/2667-3258 |
remote_bool |
true |
author2 |
Yan Wang Xiang Tao Qingli Li Li Sun Jiangang Chen Mei Zhou Menghan Hu Xiufeng Zhou |
author2Str |
Yan Wang Xiang Tao Qingli Li Li Sun Jiangang Chen Mei Zhou Menghan Hu Xiufeng Zhou |
ppnlink |
1753156513 |
callnumber-subject |
Q - General Science |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.fmre.2021.06.013 |
callnumber-a |
Q1-390 |
up_date |
2024-07-03T16:07:26.427Z |
_version_ |
1803574676216086528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015631834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311014258.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fmre.2021.06.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015631834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb27eb5224de4df7946759bf83f18b34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiansheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PCA-U-Net based breast cancer nest segmentation from microarray hyperspectral images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The incidence of breast cancer is tending younger globally, and tumor development, clinical treatment, and prognosis are largely influenced by histopathological diagnosis. For diagnosed patients, the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment. Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics. This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples. The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis, which reduces the amount of calculation and improves the recognition accuracy. The experimental accuracy of cancer nest segmentation reaches 87.14%. Furthermore, a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles, providing a relatively comprehensive reference for the pathologist's diagnosis. In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microscopic hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tissue microarrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiang Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingli Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiangang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mei Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Menghan Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiufeng Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fundamental Research</subfield><subfield code="d">KeAi Communications Co. Ltd., 2021</subfield><subfield code="g">1(2021), 5, Seite 631-640</subfield><subfield code="w">(DE-627)1753156513</subfield><subfield code="w">(DE-600)3059367-0</subfield><subfield code="x">26673258</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:631-640</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fmre.2021.06.013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db27eb5224de4df7946759bf83f18b34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2667325821001035</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2667-3258</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="h">631-640</subfield></datafield></record></collection>
|
score |
7.4010096 |