A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning

In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algo...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zhuo Li [verfasserIn]

Hui Du [verfasserIn]

Xin Chen [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Hierarchical federated learning

maximization of model quality

matching game

contract theory

incentive mechanism design

Übergeordnetes Werk:

In: IEEE Access - IEEE, 2014, 10(2022), Seite 132752-132762

Übergeordnetes Werk:

volume:10 ; year:2022 ; pages:132752-132762

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.1109/ACCESS.2022.3230695

Katalog-ID:

DOAJ01564250X

Nicht das Richtige dabei?

Schreiben Sie uns!