A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning
In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algo...
Ausführliche Beschreibung
Autor*in: |
Zhuo Li [verfasserIn] Hui Du [verfasserIn] Xin Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 132752-132762 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:132752-132762 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3230695 |
---|
Katalog-ID: |
DOAJ01564250X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ01564250X | ||
003 | DE-627 | ||
005 | 20230502124121.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3230695 |2 doi | |
035 | |a (DE-627)DOAJ01564250X | ||
035 | |a (DE-599)DOAJ32d7c71caad74188b636ddfa14dfbef6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Zhuo Li |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively. | ||
650 | 4 | |a Hierarchical federated learning | |
650 | 4 | |a maximization of model quality | |
650 | 4 | |a matching game | |
650 | 4 | |a contract theory | |
650 | 4 | |a incentive mechanism design | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Hui Du |e verfasserin |4 aut | |
700 | 0 | |a Xin Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 132752-132762 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:132752-132762 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3230695 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/32d7c71caad74188b636ddfa14dfbef6 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9992189/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 132752-132762 |
author_variant |
z l zl h d hd x c xc |
---|---|
matchkey_str |
article:21693536:2022----::totgicnieehnsdsgfrultotmztoohea |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3230695 doi (DE-627)DOAJ01564250X (DE-599)DOAJ32d7c71caad74188b636ddfa14dfbef6 DE-627 ger DE-627 rakwb eng TK1-9971 Zhuo Li verfasserin aut A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively. Hierarchical federated learning maximization of model quality matching game contract theory incentive mechanism design Electrical engineering. Electronics. Nuclear engineering Hui Du verfasserin aut Xin Chen verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 132752-132762 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:132752-132762 https://doi.org/10.1109/ACCESS.2022.3230695 kostenfrei https://doaj.org/article/32d7c71caad74188b636ddfa14dfbef6 kostenfrei https://ieeexplore.ieee.org/document/9992189/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 132752-132762 |
spelling |
10.1109/ACCESS.2022.3230695 doi (DE-627)DOAJ01564250X (DE-599)DOAJ32d7c71caad74188b636ddfa14dfbef6 DE-627 ger DE-627 rakwb eng TK1-9971 Zhuo Li verfasserin aut A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively. Hierarchical federated learning maximization of model quality matching game contract theory incentive mechanism design Electrical engineering. Electronics. Nuclear engineering Hui Du verfasserin aut Xin Chen verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 132752-132762 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:132752-132762 https://doi.org/10.1109/ACCESS.2022.3230695 kostenfrei https://doaj.org/article/32d7c71caad74188b636ddfa14dfbef6 kostenfrei https://ieeexplore.ieee.org/document/9992189/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 132752-132762 |
allfields_unstemmed |
10.1109/ACCESS.2022.3230695 doi (DE-627)DOAJ01564250X (DE-599)DOAJ32d7c71caad74188b636ddfa14dfbef6 DE-627 ger DE-627 rakwb eng TK1-9971 Zhuo Li verfasserin aut A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively. Hierarchical federated learning maximization of model quality matching game contract theory incentive mechanism design Electrical engineering. Electronics. Nuclear engineering Hui Du verfasserin aut Xin Chen verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 132752-132762 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:132752-132762 https://doi.org/10.1109/ACCESS.2022.3230695 kostenfrei https://doaj.org/article/32d7c71caad74188b636ddfa14dfbef6 kostenfrei https://ieeexplore.ieee.org/document/9992189/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 132752-132762 |
allfieldsGer |
10.1109/ACCESS.2022.3230695 doi (DE-627)DOAJ01564250X (DE-599)DOAJ32d7c71caad74188b636ddfa14dfbef6 DE-627 ger DE-627 rakwb eng TK1-9971 Zhuo Li verfasserin aut A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively. Hierarchical federated learning maximization of model quality matching game contract theory incentive mechanism design Electrical engineering. Electronics. Nuclear engineering Hui Du verfasserin aut Xin Chen verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 132752-132762 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:132752-132762 https://doi.org/10.1109/ACCESS.2022.3230695 kostenfrei https://doaj.org/article/32d7c71caad74188b636ddfa14dfbef6 kostenfrei https://ieeexplore.ieee.org/document/9992189/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 132752-132762 |
allfieldsSound |
10.1109/ACCESS.2022.3230695 doi (DE-627)DOAJ01564250X (DE-599)DOAJ32d7c71caad74188b636ddfa14dfbef6 DE-627 ger DE-627 rakwb eng TK1-9971 Zhuo Li verfasserin aut A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively. Hierarchical federated learning maximization of model quality matching game contract theory incentive mechanism design Electrical engineering. Electronics. Nuclear engineering Hui Du verfasserin aut Xin Chen verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 132752-132762 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:132752-132762 https://doi.org/10.1109/ACCESS.2022.3230695 kostenfrei https://doaj.org/article/32d7c71caad74188b636ddfa14dfbef6 kostenfrei https://ieeexplore.ieee.org/document/9992189/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 132752-132762 |
language |
English |
source |
In IEEE Access 10(2022), Seite 132752-132762 volume:10 year:2022 pages:132752-132762 |
sourceStr |
In IEEE Access 10(2022), Seite 132752-132762 volume:10 year:2022 pages:132752-132762 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hierarchical federated learning maximization of model quality matching game contract theory incentive mechanism design Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Zhuo Li @@aut@@ Hui Du @@aut@@ Xin Chen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ01564250X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01564250X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502124121.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3230695</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01564250X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ32d7c71caad74188b636ddfa14dfbef6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhuo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical federated learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximization of model quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matching game</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">contract theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">incentive mechanism design</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hui Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 132752-132762</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:132752-132762</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3230695</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/32d7c71caad74188b636ddfa14dfbef6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9992189/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">132752-132762</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zhuo Li |
spellingShingle |
Zhuo Li misc TK1-9971 misc Hierarchical federated learning misc maximization of model quality misc matching game misc contract theory misc incentive mechanism design misc Electrical engineering. Electronics. Nuclear engineering A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning |
authorStr |
Zhuo Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning Hierarchical federated learning maximization of model quality matching game contract theory incentive mechanism design |
topic |
misc TK1-9971 misc Hierarchical federated learning misc maximization of model quality misc matching game misc contract theory misc incentive mechanism design misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Hierarchical federated learning misc maximization of model quality misc matching game misc contract theory misc incentive mechanism design misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Hierarchical federated learning misc maximization of model quality misc matching game misc contract theory misc incentive mechanism design misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning |
ctrlnum |
(DE-627)DOAJ01564250X (DE-599)DOAJ32d7c71caad74188b636ddfa14dfbef6 |
title_full |
A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning |
author_sort |
Zhuo Li |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
132752 |
author_browse |
Zhuo Li Hui Du Xin Chen |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhuo Li |
doi_str_mv |
10.1109/ACCESS.2022.3230695 |
author2-role |
verfasserin |
title_sort |
two-stage incentive mechanism design for quality optimization of hierarchical federated learning |
callnumber |
TK1-9971 |
title_auth |
A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning |
abstract |
In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively. |
abstractGer |
In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively. |
abstract_unstemmed |
In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning |
url |
https://doi.org/10.1109/ACCESS.2022.3230695 https://doaj.org/article/32d7c71caad74188b636ddfa14dfbef6 https://ieeexplore.ieee.org/document/9992189/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Hui Du Xin Chen |
author2Str |
Hui Du Xin Chen |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3230695 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T16:11:09.602Z |
_version_ |
1803574910234132480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01564250X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502124121.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3230695</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01564250X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ32d7c71caad74188b636ddfa14dfbef6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhuo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we investigate the aggregated model quality maximization problem in hierarchical federated learning, the decision problem of which is proved NP-complete. We develop the mechanism MaxQ to maximize the sum of local model quality, which consists of two stages. In the first stage, an algorithm based on matching game theory is proposed to associate mobile devices with edge servers, which is proved able to achieve the stability and <inline-formula< <tex-math notation="LaTeX"<$\frac {1}{2}$ </tex-math<</inline-formula<-approximation ratio. In the second stage, we design an incentive mechanism based on contract theory to maximize the quality of models submitted by mobile devices to edge servers. Through thorough experiments, we analyse the performance of MaxQ and compare it with the existing mechanisms FAIR and EHFL, under different deep learning models ResNet18, ResNet50 and AlexNet, individually. It is found that the model quality can be improved by 8.20% and 7.81%, 10.47% and 11.87%, 10.98% and 11.97% under different models, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical federated learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximization of model quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matching game</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">contract theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">incentive mechanism design</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hui Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 132752-132762</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:132752-132762</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3230695</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/32d7c71caad74188b636ddfa14dfbef6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9992189/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">132752-132762</subfield></datafield></record></collection>
|
score |
7.402815 |