Study on the Rheological Behavior of a Model Clay Sediment
Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite su...
Ausführliche Beschreibung
Autor*in: |
Yuan Lin [verfasserIn] Huaitao Qin [verfasserIn] Jin Guo [verfasserIn] Jiawang Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Marine Science and Engineering - MDPI AG, 2014, 9(2021), 1, p 81 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; number:1, p 81 |
Links: |
---|
DOI / URN: |
10.3390/jmse9010081 |
---|
Katalog-ID: |
DOAJ015662497 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ015662497 | ||
003 | DE-627 | ||
005 | 20240414080110.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jmse9010081 |2 doi | |
035 | |a (DE-627)DOAJ015662497 | ||
035 | |a (DE-599)DOAJ8e49cfdc9d264d648cbb0def2cdf9495 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a VM1-989 | |
050 | 0 | |a GC1-1581 | |
100 | 0 | |a Yuan Lin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on the Rheological Behavior of a Model Clay Sediment |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction. | ||
650 | 4 | |a clay sediment | |
650 | 4 | |a rheology | |
650 | 4 | |a particle interaction | |
653 | 0 | |a Naval architecture. Shipbuilding. Marine engineering | |
653 | 0 | |a Oceanography | |
700 | 0 | |a Huaitao Qin |e verfasserin |4 aut | |
700 | 0 | |a Jin Guo |e verfasserin |4 aut | |
700 | 0 | |a Jiawang Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Marine Science and Engineering |d MDPI AG, 2014 |g 9(2021), 1, p 81 |w (DE-627)771274181 |w (DE-600)2738390-8 |x 20771312 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g number:1, p 81 |
856 | 4 | 0 | |u https://doi.org/10.3390/jmse9010081 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8e49cfdc9d264d648cbb0def2cdf9495 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-1312/9/1/81 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-1312 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |e 1, p 81 |
author_variant |
y l yl h q hq j g jg j c jc |
---|---|
matchkey_str |
article:20771312:2021----::tdotehooiabhvooaoe |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
VM |
publishDate |
2021 |
allfields |
10.3390/jmse9010081 doi (DE-627)DOAJ015662497 (DE-599)DOAJ8e49cfdc9d264d648cbb0def2cdf9495 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yuan Lin verfasserin aut Study on the Rheological Behavior of a Model Clay Sediment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction. clay sediment rheology particle interaction Naval architecture. Shipbuilding. Marine engineering Oceanography Huaitao Qin verfasserin aut Jin Guo verfasserin aut Jiawang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 9(2021), 1, p 81 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:9 year:2021 number:1, p 81 https://doi.org/10.3390/jmse9010081 kostenfrei https://doaj.org/article/8e49cfdc9d264d648cbb0def2cdf9495 kostenfrei https://www.mdpi.com/2077-1312/9/1/81 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1, p 81 |
spelling |
10.3390/jmse9010081 doi (DE-627)DOAJ015662497 (DE-599)DOAJ8e49cfdc9d264d648cbb0def2cdf9495 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yuan Lin verfasserin aut Study on the Rheological Behavior of a Model Clay Sediment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction. clay sediment rheology particle interaction Naval architecture. Shipbuilding. Marine engineering Oceanography Huaitao Qin verfasserin aut Jin Guo verfasserin aut Jiawang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 9(2021), 1, p 81 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:9 year:2021 number:1, p 81 https://doi.org/10.3390/jmse9010081 kostenfrei https://doaj.org/article/8e49cfdc9d264d648cbb0def2cdf9495 kostenfrei https://www.mdpi.com/2077-1312/9/1/81 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1, p 81 |
allfields_unstemmed |
10.3390/jmse9010081 doi (DE-627)DOAJ015662497 (DE-599)DOAJ8e49cfdc9d264d648cbb0def2cdf9495 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yuan Lin verfasserin aut Study on the Rheological Behavior of a Model Clay Sediment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction. clay sediment rheology particle interaction Naval architecture. Shipbuilding. Marine engineering Oceanography Huaitao Qin verfasserin aut Jin Guo verfasserin aut Jiawang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 9(2021), 1, p 81 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:9 year:2021 number:1, p 81 https://doi.org/10.3390/jmse9010081 kostenfrei https://doaj.org/article/8e49cfdc9d264d648cbb0def2cdf9495 kostenfrei https://www.mdpi.com/2077-1312/9/1/81 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1, p 81 |
allfieldsGer |
10.3390/jmse9010081 doi (DE-627)DOAJ015662497 (DE-599)DOAJ8e49cfdc9d264d648cbb0def2cdf9495 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yuan Lin verfasserin aut Study on the Rheological Behavior of a Model Clay Sediment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction. clay sediment rheology particle interaction Naval architecture. Shipbuilding. Marine engineering Oceanography Huaitao Qin verfasserin aut Jin Guo verfasserin aut Jiawang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 9(2021), 1, p 81 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:9 year:2021 number:1, p 81 https://doi.org/10.3390/jmse9010081 kostenfrei https://doaj.org/article/8e49cfdc9d264d648cbb0def2cdf9495 kostenfrei https://www.mdpi.com/2077-1312/9/1/81 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1, p 81 |
allfieldsSound |
10.3390/jmse9010081 doi (DE-627)DOAJ015662497 (DE-599)DOAJ8e49cfdc9d264d648cbb0def2cdf9495 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yuan Lin verfasserin aut Study on the Rheological Behavior of a Model Clay Sediment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction. clay sediment rheology particle interaction Naval architecture. Shipbuilding. Marine engineering Oceanography Huaitao Qin verfasserin aut Jin Guo verfasserin aut Jiawang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 9(2021), 1, p 81 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:9 year:2021 number:1, p 81 https://doi.org/10.3390/jmse9010081 kostenfrei https://doaj.org/article/8e49cfdc9d264d648cbb0def2cdf9495 kostenfrei https://www.mdpi.com/2077-1312/9/1/81 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1, p 81 |
language |
English |
source |
In Journal of Marine Science and Engineering 9(2021), 1, p 81 volume:9 year:2021 number:1, p 81 |
sourceStr |
In Journal of Marine Science and Engineering 9(2021), 1, p 81 volume:9 year:2021 number:1, p 81 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
clay sediment rheology particle interaction Naval architecture. Shipbuilding. Marine engineering Oceanography |
isfreeaccess_bool |
true |
container_title |
Journal of Marine Science and Engineering |
authorswithroles_txt_mv |
Yuan Lin @@aut@@ Huaitao Qin @@aut@@ Jin Guo @@aut@@ Jiawang Chen @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
771274181 |
id |
DOAJ015662497 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015662497</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414080110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse9010081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015662497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8e49cfdc9d264d648cbb0def2cdf9495</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuan Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on the Rheological Behavior of a Model Clay Sediment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clay sediment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rheology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle interaction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaitao Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">9(2021), 1, p 81</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1, p 81</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse9010081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8e49cfdc9d264d648cbb0def2cdf9495</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/9/1/81</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">1, p 81</subfield></datafield></record></collection>
|
callnumber-first |
V - Naval Science |
author |
Yuan Lin |
spellingShingle |
Yuan Lin misc VM1-989 misc GC1-1581 misc clay sediment misc rheology misc particle interaction misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography Study on the Rheological Behavior of a Model Clay Sediment |
authorStr |
Yuan Lin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771274181 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
VM1-989 |
illustrated |
Not Illustrated |
issn |
20771312 |
topic_title |
VM1-989 GC1-1581 Study on the Rheological Behavior of a Model Clay Sediment clay sediment rheology particle interaction |
topic |
misc VM1-989 misc GC1-1581 misc clay sediment misc rheology misc particle interaction misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_unstemmed |
misc VM1-989 misc GC1-1581 misc clay sediment misc rheology misc particle interaction misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_browse |
misc VM1-989 misc GC1-1581 misc clay sediment misc rheology misc particle interaction misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Marine Science and Engineering |
hierarchy_parent_id |
771274181 |
hierarchy_top_title |
Journal of Marine Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771274181 (DE-600)2738390-8 |
title |
Study on the Rheological Behavior of a Model Clay Sediment |
ctrlnum |
(DE-627)DOAJ015662497 (DE-599)DOAJ8e49cfdc9d264d648cbb0def2cdf9495 |
title_full |
Study on the Rheological Behavior of a Model Clay Sediment |
author_sort |
Yuan Lin |
journal |
Journal of Marine Science and Engineering |
journalStr |
Journal of Marine Science and Engineering |
callnumber-first-code |
V |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Yuan Lin Huaitao Qin Jin Guo Jiawang Chen |
container_volume |
9 |
class |
VM1-989 GC1-1581 |
format_se |
Elektronische Aufsätze |
author-letter |
Yuan Lin |
doi_str_mv |
10.3390/jmse9010081 |
author2-role |
verfasserin |
title_sort |
study on the rheological behavior of a model clay sediment |
callnumber |
VM1-989 |
title_auth |
Study on the Rheological Behavior of a Model Clay Sediment |
abstract |
Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction. |
abstractGer |
Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction. |
abstract_unstemmed |
Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 81 |
title_short |
Study on the Rheological Behavior of a Model Clay Sediment |
url |
https://doi.org/10.3390/jmse9010081 https://doaj.org/article/8e49cfdc9d264d648cbb0def2cdf9495 https://www.mdpi.com/2077-1312/9/1/81 https://doaj.org/toc/2077-1312 |
remote_bool |
true |
author2 |
Huaitao Qin Jin Guo Jiawang Chen |
author2Str |
Huaitao Qin Jin Guo Jiawang Chen |
ppnlink |
771274181 |
callnumber-subject |
VM - Naval Architecture, Shipbuilding, Marine Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jmse9010081 |
callnumber-a |
VM1-989 |
up_date |
2024-07-03T16:17:23.991Z |
_version_ |
1803575302808403968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015662497</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414080110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse9010081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015662497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8e49cfdc9d264d648cbb0def2cdf9495</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuan Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on the Rheological Behavior of a Model Clay Sediment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clay sediment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rheology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle interaction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaitao Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">9(2021), 1, p 81</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1, p 81</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse9010081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8e49cfdc9d264d648cbb0def2cdf9495</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/9/1/81</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">1, p 81</subfield></datafield></record></collection>
|
score |
7.3997498 |