Matrix converter based virtual synchronous generation technology
Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) tech...
Ausführliche Beschreibung
Autor*in: |
Chuyun Li [verfasserIn] Yougui Guo [verfasserIn] Wenlang Deng [verfasserIn] Xiao Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
frequency response characteristics matrix converter based virtual synchronous generation technology |
---|
Übergeordnetes Werk: |
In: The Journal of Engineering - Wiley, 2013, (2019) |
---|---|
Übergeordnetes Werk: |
year:2019 |
Links: |
---|
DOI / URN: |
10.1049/joe.2018.8734 |
---|
Katalog-ID: |
DOAJ015699498 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ015699498 | ||
003 | DE-627 | ||
005 | 20230501203740.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1049/joe.2018.8734 |2 doi | |
035 | |a (DE-627)DOAJ015699498 | ||
035 | |a (DE-599)DOAJc766bd50cf3f496faacef4823142676f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Chuyun Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Matrix converter based virtual synchronous generation technology |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation. | ||
650 | 4 | |a invertors | |
650 | 4 | |a distributed power generation | |
650 | 4 | |a synchronous generators | |
650 | 4 | |a matrix convertors | |
650 | 4 | |a power grids | |
650 | 4 | |a frequency response | |
650 | 4 | |a DC-AC power convertors | |
650 | 4 | |a AC-DC power convertors | |
650 | 4 | |a power control | |
650 | 4 | |a frequency modulation | |
650 | 4 | |a machine control | |
650 | 4 | |a power generation control | |
650 | 4 | |a natural resources | |
650 | 4 | |a distributed generation | |
650 | 4 | |a control strategy | |
650 | 4 | |a grid power regulation | |
650 | 4 | |a traditional VSG technology | |
650 | 4 | |a control system | |
650 | 4 | |a inertial characteristics | |
650 | 4 | |a frequency response characteristics | |
650 | 4 | |a social development | |
650 | 4 | |a matrix converter based virtual synchronous generation technology | |
650 | 4 | |a driving force | |
650 | 4 | |a two-level inverter | |
650 | 4 | |a AC-DC-AC procedure | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Yougui Guo |e verfasserin |4 aut | |
700 | 0 | |a Wenlang Deng |e verfasserin |4 aut | |
700 | 0 | |a Xiao Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Journal of Engineering |d Wiley, 2013 |g (2019) |w (DE-627)75682270X |w (DE-600)2727074-9 |x 20513305 |7 nnns |
773 | 1 | 8 | |g year:2019 |
856 | 4 | 0 | |u https://doi.org/10.1049/joe.2018.8734 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c766bd50cf3f496faacef4823142676f |z kostenfrei |
856 | 4 | 0 | |u https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8734 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2051-3305 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2019 |
author_variant |
c l cl y g yg w d wd x w xw |
---|---|
matchkey_str |
article:20513305:2019----::arxovrebsditasnhoosee |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TA |
publishDate |
2019 |
allfields |
10.1049/joe.2018.8734 doi (DE-627)DOAJ015699498 (DE-599)DOAJc766bd50cf3f496faacef4823142676f DE-627 ger DE-627 rakwb eng TA1-2040 Chuyun Li verfasserin aut Matrix converter based virtual synchronous generation technology 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation. invertors distributed power generation synchronous generators matrix convertors power grids frequency response DC-AC power convertors AC-DC power convertors power control frequency modulation machine control power generation control natural resources distributed generation control strategy grid power regulation traditional VSG technology control system inertial characteristics frequency response characteristics social development matrix converter based virtual synchronous generation technology driving force two-level inverter AC-DC-AC procedure Engineering (General). Civil engineering (General) Yougui Guo verfasserin aut Wenlang Deng verfasserin aut Xiao Wang verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.8734 kostenfrei https://doaj.org/article/c766bd50cf3f496faacef4823142676f kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8734 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
spelling |
10.1049/joe.2018.8734 doi (DE-627)DOAJ015699498 (DE-599)DOAJc766bd50cf3f496faacef4823142676f DE-627 ger DE-627 rakwb eng TA1-2040 Chuyun Li verfasserin aut Matrix converter based virtual synchronous generation technology 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation. invertors distributed power generation synchronous generators matrix convertors power grids frequency response DC-AC power convertors AC-DC power convertors power control frequency modulation machine control power generation control natural resources distributed generation control strategy grid power regulation traditional VSG technology control system inertial characteristics frequency response characteristics social development matrix converter based virtual synchronous generation technology driving force two-level inverter AC-DC-AC procedure Engineering (General). Civil engineering (General) Yougui Guo verfasserin aut Wenlang Deng verfasserin aut Xiao Wang verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.8734 kostenfrei https://doaj.org/article/c766bd50cf3f496faacef4823142676f kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8734 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfields_unstemmed |
10.1049/joe.2018.8734 doi (DE-627)DOAJ015699498 (DE-599)DOAJc766bd50cf3f496faacef4823142676f DE-627 ger DE-627 rakwb eng TA1-2040 Chuyun Li verfasserin aut Matrix converter based virtual synchronous generation technology 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation. invertors distributed power generation synchronous generators matrix convertors power grids frequency response DC-AC power convertors AC-DC power convertors power control frequency modulation machine control power generation control natural resources distributed generation control strategy grid power regulation traditional VSG technology control system inertial characteristics frequency response characteristics social development matrix converter based virtual synchronous generation technology driving force two-level inverter AC-DC-AC procedure Engineering (General). Civil engineering (General) Yougui Guo verfasserin aut Wenlang Deng verfasserin aut Xiao Wang verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.8734 kostenfrei https://doaj.org/article/c766bd50cf3f496faacef4823142676f kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8734 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsGer |
10.1049/joe.2018.8734 doi (DE-627)DOAJ015699498 (DE-599)DOAJc766bd50cf3f496faacef4823142676f DE-627 ger DE-627 rakwb eng TA1-2040 Chuyun Li verfasserin aut Matrix converter based virtual synchronous generation technology 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation. invertors distributed power generation synchronous generators matrix convertors power grids frequency response DC-AC power convertors AC-DC power convertors power control frequency modulation machine control power generation control natural resources distributed generation control strategy grid power regulation traditional VSG technology control system inertial characteristics frequency response characteristics social development matrix converter based virtual synchronous generation technology driving force two-level inverter AC-DC-AC procedure Engineering (General). Civil engineering (General) Yougui Guo verfasserin aut Wenlang Deng verfasserin aut Xiao Wang verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.8734 kostenfrei https://doaj.org/article/c766bd50cf3f496faacef4823142676f kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8734 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsSound |
10.1049/joe.2018.8734 doi (DE-627)DOAJ015699498 (DE-599)DOAJc766bd50cf3f496faacef4823142676f DE-627 ger DE-627 rakwb eng TA1-2040 Chuyun Li verfasserin aut Matrix converter based virtual synchronous generation technology 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation. invertors distributed power generation synchronous generators matrix convertors power grids frequency response DC-AC power convertors AC-DC power convertors power control frequency modulation machine control power generation control natural resources distributed generation control strategy grid power regulation traditional VSG technology control system inertial characteristics frequency response characteristics social development matrix converter based virtual synchronous generation technology driving force two-level inverter AC-DC-AC procedure Engineering (General). Civil engineering (General) Yougui Guo verfasserin aut Wenlang Deng verfasserin aut Xiao Wang verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.8734 kostenfrei https://doaj.org/article/c766bd50cf3f496faacef4823142676f kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8734 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
language |
English |
source |
In The Journal of Engineering (2019) year:2019 |
sourceStr |
In The Journal of Engineering (2019) year:2019 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
invertors distributed power generation synchronous generators matrix convertors power grids frequency response DC-AC power convertors AC-DC power convertors power control frequency modulation machine control power generation control natural resources distributed generation control strategy grid power regulation traditional VSG technology control system inertial characteristics frequency response characteristics social development matrix converter based virtual synchronous generation technology driving force two-level inverter AC-DC-AC procedure Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
The Journal of Engineering |
authorswithroles_txt_mv |
Chuyun Li @@aut@@ Yougui Guo @@aut@@ Wenlang Deng @@aut@@ Xiao Wang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
75682270X |
id |
DOAJ015699498 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015699498</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501203740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/joe.2018.8734</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015699498</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc766bd50cf3f496faacef4823142676f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuyun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix converter based virtual synchronous generation technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">invertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronous generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix convertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DC-AC power convertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AC-DC power convertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power generation control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grid power regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traditional VSG technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inertial characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency response characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">social development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix converter based virtual synchronous generation technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">driving force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-level inverter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AC-DC-AC procedure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yougui Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenlang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Journal of Engineering</subfield><subfield code="d">Wiley, 2013</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)75682270X</subfield><subfield code="w">(DE-600)2727074-9</subfield><subfield code="x">20513305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/joe.2018.8734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c766bd50cf3f496faacef4823142676f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-3305</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Chuyun Li |
spellingShingle |
Chuyun Li misc TA1-2040 misc invertors misc distributed power generation misc synchronous generators misc matrix convertors misc power grids misc frequency response misc DC-AC power convertors misc AC-DC power convertors misc power control misc frequency modulation misc machine control misc power generation control misc natural resources misc distributed generation misc control strategy misc grid power regulation misc traditional VSG technology misc control system misc inertial characteristics misc frequency response characteristics misc social development misc matrix converter based virtual synchronous generation technology misc driving force misc two-level inverter misc AC-DC-AC procedure misc Engineering (General). Civil engineering (General) Matrix converter based virtual synchronous generation technology |
authorStr |
Chuyun Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)75682270X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20513305 |
topic_title |
TA1-2040 Matrix converter based virtual synchronous generation technology invertors distributed power generation synchronous generators matrix convertors power grids frequency response DC-AC power convertors AC-DC power convertors power control frequency modulation machine control power generation control natural resources distributed generation control strategy grid power regulation traditional VSG technology control system inertial characteristics frequency response characteristics social development matrix converter based virtual synchronous generation technology driving force two-level inverter AC-DC-AC procedure |
topic |
misc TA1-2040 misc invertors misc distributed power generation misc synchronous generators misc matrix convertors misc power grids misc frequency response misc DC-AC power convertors misc AC-DC power convertors misc power control misc frequency modulation misc machine control misc power generation control misc natural resources misc distributed generation misc control strategy misc grid power regulation misc traditional VSG technology misc control system misc inertial characteristics misc frequency response characteristics misc social development misc matrix converter based virtual synchronous generation technology misc driving force misc two-level inverter misc AC-DC-AC procedure misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc invertors misc distributed power generation misc synchronous generators misc matrix convertors misc power grids misc frequency response misc DC-AC power convertors misc AC-DC power convertors misc power control misc frequency modulation misc machine control misc power generation control misc natural resources misc distributed generation misc control strategy misc grid power regulation misc traditional VSG technology misc control system misc inertial characteristics misc frequency response characteristics misc social development misc matrix converter based virtual synchronous generation technology misc driving force misc two-level inverter misc AC-DC-AC procedure misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc invertors misc distributed power generation misc synchronous generators misc matrix convertors misc power grids misc frequency response misc DC-AC power convertors misc AC-DC power convertors misc power control misc frequency modulation misc machine control misc power generation control misc natural resources misc distributed generation misc control strategy misc grid power regulation misc traditional VSG technology misc control system misc inertial characteristics misc frequency response characteristics misc social development misc matrix converter based virtual synchronous generation technology misc driving force misc two-level inverter misc AC-DC-AC procedure misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Journal of Engineering |
hierarchy_parent_id |
75682270X |
hierarchy_top_title |
The Journal of Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)75682270X (DE-600)2727074-9 |
title |
Matrix converter based virtual synchronous generation technology |
ctrlnum |
(DE-627)DOAJ015699498 (DE-599)DOAJc766bd50cf3f496faacef4823142676f |
title_full |
Matrix converter based virtual synchronous generation technology |
author_sort |
Chuyun Li |
journal |
The Journal of Engineering |
journalStr |
The Journal of Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Chuyun Li Yougui Guo Wenlang Deng Xiao Wang |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Chuyun Li |
doi_str_mv |
10.1049/joe.2018.8734 |
author2-role |
verfasserin |
title_sort |
matrix converter based virtual synchronous generation technology |
callnumber |
TA1-2040 |
title_auth |
Matrix converter based virtual synchronous generation technology |
abstract |
Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation. |
abstractGer |
Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation. |
abstract_unstemmed |
Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Matrix converter based virtual synchronous generation technology |
url |
https://doi.org/10.1049/joe.2018.8734 https://doaj.org/article/c766bd50cf3f496faacef4823142676f https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8734 https://doaj.org/toc/2051-3305 |
remote_bool |
true |
author2 |
Yougui Guo Wenlang Deng Xiao Wang |
author2Str |
Yougui Guo Wenlang Deng Xiao Wang |
ppnlink |
75682270X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1049/joe.2018.8734 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T16:31:26.102Z |
_version_ |
1803576185829982208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015699498</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501203740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/joe.2018.8734</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015699498</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc766bd50cf3f496faacef4823142676f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuyun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix converter based virtual synchronous generation technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Energy is an important driving force for social development. The shortage of natural resources urgently promotes the research of energy and the development of related technologies. Meanwhile, the distributed generation is one of the most important approaches. Virtual synchronous generator (VSG) technology, as a kind of control strategy that can participate actively in grid power regulation, has drawn much attention. Traditional VSG technology uses the two-level inverter as the main circuit. Based on the theory of VSG and the matrix converter (MC) as the main circuit of the VSG, the control system can imitate synchronous generator's characteristics such as inertial characteristics, frequency response characteristics and frequency modulation. The method provides a feasible solution for the power conversion of the distributed generation, which is the AC output, omitting the procedure of AC–DC–AC. Through the simulation, it is verified that the VSG technology can be applied to the MC, which provides a new idea for the exchange transformation in distributed generation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">invertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronous generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix convertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DC-AC power convertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AC-DC power convertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power generation control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grid power regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traditional VSG technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inertial characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency response characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">social development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix converter based virtual synchronous generation technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">driving force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-level inverter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AC-DC-AC procedure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yougui Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenlang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Journal of Engineering</subfield><subfield code="d">Wiley, 2013</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)75682270X</subfield><subfield code="w">(DE-600)2727074-9</subfield><subfield code="x">20513305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/joe.2018.8734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c766bd50cf3f496faacef4823142676f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-3305</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
score |
7.399102 |