A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy
Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of...
Ausführliche Beschreibung
Autor*in: |
Robert eCooper [verfasserIn] Juliette eSelb [verfasserIn] Louis eGagnon [verfasserIn] Dorte ePhillip [verfasserIn] Henrik W Schytz [verfasserIn] Helle K Iversen [verfasserIn] Messoud eAshina [verfasserIn] David A Boas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Neuroscience - Frontiers Media S.A., 2008, 6(2012) |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2012 |
Links: |
---|
DOI / URN: |
10.3389/fnins.2012.00147 |
---|
Katalog-ID: |
DOAJ015731731 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ015731731 | ||
003 | DE-627 | ||
005 | 20230503071219.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fnins.2012.00147 |2 doi | |
035 | |a (DE-627)DOAJ015731731 | ||
035 | |a (DE-599)DOAJ5419ad53c07f40ed9cec9fc1efb4121b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC321-571 | |
100 | 0 | |a Robert eCooper |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data. | ||
650 | 4 | |a NIRS | |
650 | 4 | |a near-infrared spectroscopy | |
650 | 4 | |a functional near-infrared spectroscopy | |
650 | 4 | |a hemodynamic response | |
650 | 4 | |a motion artifact | |
653 | 0 | |a Neurosciences. Biological psychiatry. Neuropsychiatry | |
700 | 0 | |a Juliette eSelb |e verfasserin |4 aut | |
700 | 0 | |a Louis eGagnon |e verfasserin |4 aut | |
700 | 0 | |a Dorte ePhillip |e verfasserin |4 aut | |
700 | 0 | |a Henrik W Schytz |e verfasserin |4 aut | |
700 | 0 | |a Helle K Iversen |e verfasserin |4 aut | |
700 | 0 | |a Messoud eAshina |e verfasserin |4 aut | |
700 | 0 | |a David A Boas |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Neuroscience |d Frontiers Media S.A., 2008 |g 6(2012) |w (DE-627)55908109X |w (DE-600)2411902-7 |x 1662453X |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2012 |
856 | 4 | 0 | |u https://doi.org/10.3389/fnins.2012.00147 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5419ad53c07f40ed9cec9fc1efb4121b |z kostenfrei |
856 | 4 | 0 | |u http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00147/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1662-453X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2012 |
author_variant |
r e re j e je l e le d e de h w s hws h k i hki m e me d a b dab |
---|---|
matchkey_str |
article:1662453X:2012----::sseaicmaioomtoatfccretotcnqefrucin |
hierarchy_sort_str |
2012 |
callnumber-subject-code |
RC |
publishDate |
2012 |
allfields |
10.3389/fnins.2012.00147 doi (DE-627)DOAJ015731731 (DE-599)DOAJ5419ad53c07f40ed9cec9fc1efb4121b DE-627 ger DE-627 rakwb eng RC321-571 Robert eCooper verfasserin aut A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data. NIRS near-infrared spectroscopy functional near-infrared spectroscopy hemodynamic response motion artifact Neurosciences. Biological psychiatry. Neuropsychiatry Juliette eSelb verfasserin aut Louis eGagnon verfasserin aut Dorte ePhillip verfasserin aut Henrik W Schytz verfasserin aut Helle K Iversen verfasserin aut Messoud eAshina verfasserin aut David A Boas verfasserin aut In Frontiers in Neuroscience Frontiers Media S.A., 2008 6(2012) (DE-627)55908109X (DE-600)2411902-7 1662453X nnns volume:6 year:2012 https://doi.org/10.3389/fnins.2012.00147 kostenfrei https://doaj.org/article/5419ad53c07f40ed9cec9fc1efb4121b kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00147/full kostenfrei https://doaj.org/toc/1662-453X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2012 |
spelling |
10.3389/fnins.2012.00147 doi (DE-627)DOAJ015731731 (DE-599)DOAJ5419ad53c07f40ed9cec9fc1efb4121b DE-627 ger DE-627 rakwb eng RC321-571 Robert eCooper verfasserin aut A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data. NIRS near-infrared spectroscopy functional near-infrared spectroscopy hemodynamic response motion artifact Neurosciences. Biological psychiatry. Neuropsychiatry Juliette eSelb verfasserin aut Louis eGagnon verfasserin aut Dorte ePhillip verfasserin aut Henrik W Schytz verfasserin aut Helle K Iversen verfasserin aut Messoud eAshina verfasserin aut David A Boas verfasserin aut In Frontiers in Neuroscience Frontiers Media S.A., 2008 6(2012) (DE-627)55908109X (DE-600)2411902-7 1662453X nnns volume:6 year:2012 https://doi.org/10.3389/fnins.2012.00147 kostenfrei https://doaj.org/article/5419ad53c07f40ed9cec9fc1efb4121b kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00147/full kostenfrei https://doaj.org/toc/1662-453X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2012 |
allfields_unstemmed |
10.3389/fnins.2012.00147 doi (DE-627)DOAJ015731731 (DE-599)DOAJ5419ad53c07f40ed9cec9fc1efb4121b DE-627 ger DE-627 rakwb eng RC321-571 Robert eCooper verfasserin aut A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data. NIRS near-infrared spectroscopy functional near-infrared spectroscopy hemodynamic response motion artifact Neurosciences. Biological psychiatry. Neuropsychiatry Juliette eSelb verfasserin aut Louis eGagnon verfasserin aut Dorte ePhillip verfasserin aut Henrik W Schytz verfasserin aut Helle K Iversen verfasserin aut Messoud eAshina verfasserin aut David A Boas verfasserin aut In Frontiers in Neuroscience Frontiers Media S.A., 2008 6(2012) (DE-627)55908109X (DE-600)2411902-7 1662453X nnns volume:6 year:2012 https://doi.org/10.3389/fnins.2012.00147 kostenfrei https://doaj.org/article/5419ad53c07f40ed9cec9fc1efb4121b kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00147/full kostenfrei https://doaj.org/toc/1662-453X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2012 |
allfieldsGer |
10.3389/fnins.2012.00147 doi (DE-627)DOAJ015731731 (DE-599)DOAJ5419ad53c07f40ed9cec9fc1efb4121b DE-627 ger DE-627 rakwb eng RC321-571 Robert eCooper verfasserin aut A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data. NIRS near-infrared spectroscopy functional near-infrared spectroscopy hemodynamic response motion artifact Neurosciences. Biological psychiatry. Neuropsychiatry Juliette eSelb verfasserin aut Louis eGagnon verfasserin aut Dorte ePhillip verfasserin aut Henrik W Schytz verfasserin aut Helle K Iversen verfasserin aut Messoud eAshina verfasserin aut David A Boas verfasserin aut In Frontiers in Neuroscience Frontiers Media S.A., 2008 6(2012) (DE-627)55908109X (DE-600)2411902-7 1662453X nnns volume:6 year:2012 https://doi.org/10.3389/fnins.2012.00147 kostenfrei https://doaj.org/article/5419ad53c07f40ed9cec9fc1efb4121b kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00147/full kostenfrei https://doaj.org/toc/1662-453X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2012 |
allfieldsSound |
10.3389/fnins.2012.00147 doi (DE-627)DOAJ015731731 (DE-599)DOAJ5419ad53c07f40ed9cec9fc1efb4121b DE-627 ger DE-627 rakwb eng RC321-571 Robert eCooper verfasserin aut A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data. NIRS near-infrared spectroscopy functional near-infrared spectroscopy hemodynamic response motion artifact Neurosciences. Biological psychiatry. Neuropsychiatry Juliette eSelb verfasserin aut Louis eGagnon verfasserin aut Dorte ePhillip verfasserin aut Henrik W Schytz verfasserin aut Helle K Iversen verfasserin aut Messoud eAshina verfasserin aut David A Boas verfasserin aut In Frontiers in Neuroscience Frontiers Media S.A., 2008 6(2012) (DE-627)55908109X (DE-600)2411902-7 1662453X nnns volume:6 year:2012 https://doi.org/10.3389/fnins.2012.00147 kostenfrei https://doaj.org/article/5419ad53c07f40ed9cec9fc1efb4121b kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00147/full kostenfrei https://doaj.org/toc/1662-453X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2012 |
language |
English |
source |
In Frontiers in Neuroscience 6(2012) volume:6 year:2012 |
sourceStr |
In Frontiers in Neuroscience 6(2012) volume:6 year:2012 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
NIRS near-infrared spectroscopy functional near-infrared spectroscopy hemodynamic response motion artifact Neurosciences. Biological psychiatry. Neuropsychiatry |
isfreeaccess_bool |
true |
container_title |
Frontiers in Neuroscience |
authorswithroles_txt_mv |
Robert eCooper @@aut@@ Juliette eSelb @@aut@@ Louis eGagnon @@aut@@ Dorte ePhillip @@aut@@ Henrik W Schytz @@aut@@ Helle K Iversen @@aut@@ Messoud eAshina @@aut@@ David A Boas @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
55908109X |
id |
DOAJ015731731 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015731731</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503071219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fnins.2012.00147</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015731731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5419ad53c07f40ed9cec9fc1efb4121b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Robert eCooper</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NIRS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near-infrared spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional near-infrared spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hemodynamic response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">motion artifact</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juliette eSelb</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Louis eGagnon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dorte ePhillip</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henrik W Schytz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Helle K Iversen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Messoud eAshina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David A Boas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Neuroscience</subfield><subfield code="d">Frontiers Media S.A., 2008</subfield><subfield code="g">6(2012)</subfield><subfield code="w">(DE-627)55908109X</subfield><subfield code="w">(DE-600)2411902-7</subfield><subfield code="x">1662453X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2012</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fnins.2012.00147</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5419ad53c07f40ed9cec9fc1efb4121b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00147/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1662-453X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2012</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Robert eCooper |
spellingShingle |
Robert eCooper misc RC321-571 misc NIRS misc near-infrared spectroscopy misc functional near-infrared spectroscopy misc hemodynamic response misc motion artifact misc Neurosciences. Biological psychiatry. Neuropsychiatry A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy |
authorStr |
Robert eCooper |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)55908109X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC321-571 |
illustrated |
Not Illustrated |
issn |
1662453X |
topic_title |
RC321-571 A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy NIRS near-infrared spectroscopy functional near-infrared spectroscopy hemodynamic response motion artifact |
topic |
misc RC321-571 misc NIRS misc near-infrared spectroscopy misc functional near-infrared spectroscopy misc hemodynamic response misc motion artifact misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_unstemmed |
misc RC321-571 misc NIRS misc near-infrared spectroscopy misc functional near-infrared spectroscopy misc hemodynamic response misc motion artifact misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_browse |
misc RC321-571 misc NIRS misc near-infrared spectroscopy misc functional near-infrared spectroscopy misc hemodynamic response misc motion artifact misc Neurosciences. Biological psychiatry. Neuropsychiatry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Neuroscience |
hierarchy_parent_id |
55908109X |
hierarchy_top_title |
Frontiers in Neuroscience |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)55908109X (DE-600)2411902-7 |
title |
A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy |
ctrlnum |
(DE-627)DOAJ015731731 (DE-599)DOAJ5419ad53c07f40ed9cec9fc1efb4121b |
title_full |
A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy |
author_sort |
Robert eCooper |
journal |
Frontiers in Neuroscience |
journalStr |
Frontiers in Neuroscience |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
author_browse |
Robert eCooper Juliette eSelb Louis eGagnon Dorte ePhillip Henrik W Schytz Helle K Iversen Messoud eAshina David A Boas |
container_volume |
6 |
class |
RC321-571 |
format_se |
Elektronische Aufsätze |
author-letter |
Robert eCooper |
doi_str_mv |
10.3389/fnins.2012.00147 |
author2-role |
verfasserin |
title_sort |
systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy |
callnumber |
RC321-571 |
title_auth |
A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy |
abstract |
Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data. |
abstractGer |
Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data. |
abstract_unstemmed |
Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy |
url |
https://doi.org/10.3389/fnins.2012.00147 https://doaj.org/article/5419ad53c07f40ed9cec9fc1efb4121b http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00147/full https://doaj.org/toc/1662-453X |
remote_bool |
true |
author2 |
Juliette eSelb Louis eGagnon Dorte ePhillip Henrik W Schytz Helle K Iversen Messoud eAshina David A Boas |
author2Str |
Juliette eSelb Louis eGagnon Dorte ePhillip Henrik W Schytz Helle K Iversen Messoud eAshina David A Boas |
ppnlink |
55908109X |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fnins.2012.00147 |
callnumber-a |
RC321-571 |
up_date |
2024-07-03T16:42:51.739Z |
_version_ |
1803576904767242241 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ015731731</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503071219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fnins.2012.00147</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ015731731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5419ad53c07f40ed9cec9fc1efb4121b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Robert eCooper</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS data sets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function. Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error and significant increase in the contrast-to-noise ratio of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in mean-squared error (55 %) while wavelet analysis produces the highest average increase in contrast-to-noise ratio (39 %). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NIRS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near-infrared spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional near-infrared spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hemodynamic response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">motion artifact</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juliette eSelb</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Louis eGagnon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dorte ePhillip</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henrik W Schytz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Helle K Iversen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Messoud eAshina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David A Boas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Neuroscience</subfield><subfield code="d">Frontiers Media S.A., 2008</subfield><subfield code="g">6(2012)</subfield><subfield code="w">(DE-627)55908109X</subfield><subfield code="w">(DE-600)2411902-7</subfield><subfield code="x">1662453X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2012</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fnins.2012.00147</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5419ad53c07f40ed9cec9fc1efb4121b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00147/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1662-453X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2012</subfield></datafield></record></collection>
|
score |
7.4005814 |