On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks
As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy a...
Ausführliche Beschreibung
Autor*in: |
Dongyu Wang [verfasserIn] Yanwen Lan [verfasserIn] Tiezhu Zhao [verfasserIn] Zhenping Yin [verfasserIn] Xiaoxiang Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 6(2018), Seite 63426-63441 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; pages:63426-63441 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2018.2876893 |
---|
Katalog-ID: |
DOAJ016089812 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ016089812 | ||
003 | DE-627 | ||
005 | 20230310080836.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2018.2876893 |2 doi | |
035 | |a (DE-627)DOAJ016089812 | ||
035 | |a (DE-599)DOAJf745799cee004f49b1655f23240cd0a9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Dongyu Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs. | ||
650 | 4 | |a D2D Multicast | |
650 | 4 | |a content offloading | |
650 | 4 | |a cooperative caching | |
650 | 4 | |a coded caching | |
650 | 4 | |a computation offloading | |
650 | 4 | |a MEC | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Yanwen Lan |e verfasserin |4 aut | |
700 | 0 | |a Tiezhu Zhao |e verfasserin |4 aut | |
700 | 0 | |a Zhenping Yin |e verfasserin |4 aut | |
700 | 0 | |a Xiaoxiang Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 6(2018), Seite 63426-63441 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g pages:63426-63441 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2018.2876893 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f745799cee004f49b1655f23240cd0a9 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8502937/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |h 63426-63441 |
author_variant |
d w dw y l yl t z tz z y zy x w xw |
---|---|
matchkey_str |
article:21693536:2018----::nhdsgocmuainflaignahadd2 |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TK |
publishDate |
2018 |
allfields |
10.1109/ACCESS.2018.2876893 doi (DE-627)DOAJ016089812 (DE-599)DOAJf745799cee004f49b1655f23240cd0a9 DE-627 ger DE-627 rakwb eng TK1-9971 Dongyu Wang verfasserin aut On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs. D2D Multicast content offloading cooperative caching coded caching computation offloading MEC Electrical engineering. Electronics. Nuclear engineering Yanwen Lan verfasserin aut Tiezhu Zhao verfasserin aut Zhenping Yin verfasserin aut Xiaoxiang Wang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 63426-63441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:63426-63441 https://doi.org/10.1109/ACCESS.2018.2876893 kostenfrei https://doaj.org/article/f745799cee004f49b1655f23240cd0a9 kostenfrei https://ieeexplore.ieee.org/document/8502937/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 63426-63441 |
spelling |
10.1109/ACCESS.2018.2876893 doi (DE-627)DOAJ016089812 (DE-599)DOAJf745799cee004f49b1655f23240cd0a9 DE-627 ger DE-627 rakwb eng TK1-9971 Dongyu Wang verfasserin aut On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs. D2D Multicast content offloading cooperative caching coded caching computation offloading MEC Electrical engineering. Electronics. Nuclear engineering Yanwen Lan verfasserin aut Tiezhu Zhao verfasserin aut Zhenping Yin verfasserin aut Xiaoxiang Wang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 63426-63441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:63426-63441 https://doi.org/10.1109/ACCESS.2018.2876893 kostenfrei https://doaj.org/article/f745799cee004f49b1655f23240cd0a9 kostenfrei https://ieeexplore.ieee.org/document/8502937/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 63426-63441 |
allfields_unstemmed |
10.1109/ACCESS.2018.2876893 doi (DE-627)DOAJ016089812 (DE-599)DOAJf745799cee004f49b1655f23240cd0a9 DE-627 ger DE-627 rakwb eng TK1-9971 Dongyu Wang verfasserin aut On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs. D2D Multicast content offloading cooperative caching coded caching computation offloading MEC Electrical engineering. Electronics. Nuclear engineering Yanwen Lan verfasserin aut Tiezhu Zhao verfasserin aut Zhenping Yin verfasserin aut Xiaoxiang Wang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 63426-63441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:63426-63441 https://doi.org/10.1109/ACCESS.2018.2876893 kostenfrei https://doaj.org/article/f745799cee004f49b1655f23240cd0a9 kostenfrei https://ieeexplore.ieee.org/document/8502937/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 63426-63441 |
allfieldsGer |
10.1109/ACCESS.2018.2876893 doi (DE-627)DOAJ016089812 (DE-599)DOAJf745799cee004f49b1655f23240cd0a9 DE-627 ger DE-627 rakwb eng TK1-9971 Dongyu Wang verfasserin aut On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs. D2D Multicast content offloading cooperative caching coded caching computation offloading MEC Electrical engineering. Electronics. Nuclear engineering Yanwen Lan verfasserin aut Tiezhu Zhao verfasserin aut Zhenping Yin verfasserin aut Xiaoxiang Wang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 63426-63441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:63426-63441 https://doi.org/10.1109/ACCESS.2018.2876893 kostenfrei https://doaj.org/article/f745799cee004f49b1655f23240cd0a9 kostenfrei https://ieeexplore.ieee.org/document/8502937/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 63426-63441 |
allfieldsSound |
10.1109/ACCESS.2018.2876893 doi (DE-627)DOAJ016089812 (DE-599)DOAJf745799cee004f49b1655f23240cd0a9 DE-627 ger DE-627 rakwb eng TK1-9971 Dongyu Wang verfasserin aut On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs. D2D Multicast content offloading cooperative caching coded caching computation offloading MEC Electrical engineering. Electronics. Nuclear engineering Yanwen Lan verfasserin aut Tiezhu Zhao verfasserin aut Zhenping Yin verfasserin aut Xiaoxiang Wang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 63426-63441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:63426-63441 https://doi.org/10.1109/ACCESS.2018.2876893 kostenfrei https://doaj.org/article/f745799cee004f49b1655f23240cd0a9 kostenfrei https://ieeexplore.ieee.org/document/8502937/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 63426-63441 |
language |
English |
source |
In IEEE Access 6(2018), Seite 63426-63441 volume:6 year:2018 pages:63426-63441 |
sourceStr |
In IEEE Access 6(2018), Seite 63426-63441 volume:6 year:2018 pages:63426-63441 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
D2D Multicast content offloading cooperative caching coded caching computation offloading MEC Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Dongyu Wang @@aut@@ Yanwen Lan @@aut@@ Tiezhu Zhao @@aut@@ Zhenping Yin @@aut@@ Xiaoxiang Wang @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ016089812 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016089812</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310080836.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2876893</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016089812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf745799cee004f49b1655f23240cd0a9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dongyu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D2D Multicast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">content offloading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coded caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computation offloading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MEC</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanwen Lan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiezhu Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenping Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxiang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 63426-63441</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:63426-63441</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2876893</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f745799cee004f49b1655f23240cd0a9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8502937/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">63426-63441</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Dongyu Wang |
spellingShingle |
Dongyu Wang misc TK1-9971 misc D2D Multicast misc content offloading misc cooperative caching misc coded caching misc computation offloading misc MEC misc Electrical engineering. Electronics. Nuclear engineering On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks |
authorStr |
Dongyu Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks D2D Multicast content offloading cooperative caching coded caching computation offloading MEC |
topic |
misc TK1-9971 misc D2D Multicast misc content offloading misc cooperative caching misc coded caching misc computation offloading misc MEC misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc D2D Multicast misc content offloading misc cooperative caching misc coded caching misc computation offloading misc MEC misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc D2D Multicast misc content offloading misc cooperative caching misc coded caching misc computation offloading misc MEC misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks |
ctrlnum |
(DE-627)DOAJ016089812 (DE-599)DOAJf745799cee004f49b1655f23240cd0a9 |
title_full |
On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks |
author_sort |
Dongyu Wang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
63426 |
author_browse |
Dongyu Wang Yanwen Lan Tiezhu Zhao Zhenping Yin Xiaoxiang Wang |
container_volume |
6 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Dongyu Wang |
doi_str_mv |
10.1109/ACCESS.2018.2876893 |
author2-role |
verfasserin |
title_sort |
on the design of computation offloading in cache-aided d2d multicast networks |
callnumber |
TK1-9971 |
title_auth |
On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks |
abstract |
As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs. |
abstractGer |
As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs. |
abstract_unstemmed |
As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks |
url |
https://doi.org/10.1109/ACCESS.2018.2876893 https://doaj.org/article/f745799cee004f49b1655f23240cd0a9 https://ieeexplore.ieee.org/document/8502937/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Yanwen Lan Tiezhu Zhao Zhenping Yin Xiaoxiang Wang |
author2Str |
Yanwen Lan Tiezhu Zhao Zhenping Yin Xiaoxiang Wang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2018.2876893 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T18:55:21.814Z |
_version_ |
1803585241026134016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016089812</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310080836.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2876893</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016089812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf745799cee004f49b1655f23240cd0a9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dongyu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Design of Computation Offloading in Cache-Aided D2D Multicast Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As the demand of data-hungry and computing intensive tasks grows dramatically, cache-aided device-to-device multicast (D2MD) networks are introduced, which can offload traffic from the base stations to D2D users (DUEs) directly to alleviate the heavy burden on backhaul links and improve the energy and spectrum efficiency. However, most previous works ignored the limitation of battery power and scarce computing capabilities of DUEs. In this paper, we study the computation and traffic offloading in cache-aided D2MD networks for the content delivery and delay sensitive task offloading services. Firstly, in order to provide stable multicast links and enhanced computing resources, a D2D cluster head (DCH) selection strategy is proposed that jointly considers the social attributes, available energy, and transfer rate of DUEs. Secondly, to improve the efficiency of content distribution and optimize the energy consumption of content delivery, we propose a novel multicast-aware coded and cooperative caching scheme, which may increase the opportunity for D2D multicasting to obtain the desired contents. Thirdly, considering the DUEs association, uplink full duplex DCH transmission power allocation, and mobile edge computing computation resource scheduling, an optimization computation offloading model is formulated. On this basis, we model the computation offloading and resource allocation optimization problem. Furthermore, we transform this problem into user allocation optimization problem and resource allocation optimization problem (RAOP), and RAOP is proved as a convex problem, and the optimal resource allocation solution is found. Finally, the simulation results show that our proposed schemes can effectively decrease the energy consumption and computing costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D2D Multicast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">content offloading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coded caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computation offloading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MEC</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanwen Lan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiezhu Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenping Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxiang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 63426-63441</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:63426-63441</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2876893</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f745799cee004f49b1655f23240cd0a9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8502937/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">63426-63441</subfield></datafield></record></collection>
|
score |
7.4023542 |