Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators
An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain su...
Ausführliche Beschreibung
Autor*in: |
Jinsuk Choi [verfasserIn] Jaemin Baek [verfasserIn] Woongyong Lee [verfasserIn] Young Sam Lee [verfasserIn] Soohee Han [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 169897-169907 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:169897-169907 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3022523 |
---|
Katalog-ID: |
DOAJ016142268 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ016142268 | ||
003 | DE-627 | ||
005 | 20230310081137.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3022523 |2 doi | |
035 | |a (DE-627)DOAJ016142268 | ||
035 | |a (DE-599)DOAJbdafeb79c67841f5822471ab684ccb72 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jinsuk Choi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance. | ||
650 | 4 | |a Adaptive control | |
650 | 4 | |a time-delay control | |
650 | 4 | |a time-delay estimation | |
650 | 4 | |a nonsingular terminal sliding-mode | |
650 | 4 | |a robot manipulator | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jaemin Baek |e verfasserin |4 aut | |
700 | 0 | |a Woongyong Lee |e verfasserin |4 aut | |
700 | 0 | |a Young Sam Lee |e verfasserin |4 aut | |
700 | 0 | |a Soohee Han |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 169897-169907 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:169897-169907 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3022523 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bdafeb79c67841f5822471ab684ccb72 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9187596/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 169897-169907 |
author_variant |
j c jc j b jb w l wl y s l ysl s h sh |
---|---|
matchkey_str |
article:21693536:2020----::dpieoefecnrlihosnuatriasiigoeoapi |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3022523 doi (DE-627)DOAJ016142268 (DE-599)DOAJbdafeb79c67841f5822471ab684ccb72 DE-627 ger DE-627 rakwb eng TK1-9971 Jinsuk Choi verfasserin aut Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance. Adaptive control time-delay control time-delay estimation nonsingular terminal sliding-mode robot manipulator Electrical engineering. Electronics. Nuclear engineering Jaemin Baek verfasserin aut Woongyong Lee verfasserin aut Young Sam Lee verfasserin aut Soohee Han verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169897-169907 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169897-169907 https://doi.org/10.1109/ACCESS.2020.3022523 kostenfrei https://doaj.org/article/bdafeb79c67841f5822471ab684ccb72 kostenfrei https://ieeexplore.ieee.org/document/9187596/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169897-169907 |
spelling |
10.1109/ACCESS.2020.3022523 doi (DE-627)DOAJ016142268 (DE-599)DOAJbdafeb79c67841f5822471ab684ccb72 DE-627 ger DE-627 rakwb eng TK1-9971 Jinsuk Choi verfasserin aut Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance. Adaptive control time-delay control time-delay estimation nonsingular terminal sliding-mode robot manipulator Electrical engineering. Electronics. Nuclear engineering Jaemin Baek verfasserin aut Woongyong Lee verfasserin aut Young Sam Lee verfasserin aut Soohee Han verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169897-169907 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169897-169907 https://doi.org/10.1109/ACCESS.2020.3022523 kostenfrei https://doaj.org/article/bdafeb79c67841f5822471ab684ccb72 kostenfrei https://ieeexplore.ieee.org/document/9187596/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169897-169907 |
allfields_unstemmed |
10.1109/ACCESS.2020.3022523 doi (DE-627)DOAJ016142268 (DE-599)DOAJbdafeb79c67841f5822471ab684ccb72 DE-627 ger DE-627 rakwb eng TK1-9971 Jinsuk Choi verfasserin aut Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance. Adaptive control time-delay control time-delay estimation nonsingular terminal sliding-mode robot manipulator Electrical engineering. Electronics. Nuclear engineering Jaemin Baek verfasserin aut Woongyong Lee verfasserin aut Young Sam Lee verfasserin aut Soohee Han verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169897-169907 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169897-169907 https://doi.org/10.1109/ACCESS.2020.3022523 kostenfrei https://doaj.org/article/bdafeb79c67841f5822471ab684ccb72 kostenfrei https://ieeexplore.ieee.org/document/9187596/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169897-169907 |
allfieldsGer |
10.1109/ACCESS.2020.3022523 doi (DE-627)DOAJ016142268 (DE-599)DOAJbdafeb79c67841f5822471ab684ccb72 DE-627 ger DE-627 rakwb eng TK1-9971 Jinsuk Choi verfasserin aut Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance. Adaptive control time-delay control time-delay estimation nonsingular terminal sliding-mode robot manipulator Electrical engineering. Electronics. Nuclear engineering Jaemin Baek verfasserin aut Woongyong Lee verfasserin aut Young Sam Lee verfasserin aut Soohee Han verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169897-169907 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169897-169907 https://doi.org/10.1109/ACCESS.2020.3022523 kostenfrei https://doaj.org/article/bdafeb79c67841f5822471ab684ccb72 kostenfrei https://ieeexplore.ieee.org/document/9187596/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169897-169907 |
allfieldsSound |
10.1109/ACCESS.2020.3022523 doi (DE-627)DOAJ016142268 (DE-599)DOAJbdafeb79c67841f5822471ab684ccb72 DE-627 ger DE-627 rakwb eng TK1-9971 Jinsuk Choi verfasserin aut Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance. Adaptive control time-delay control time-delay estimation nonsingular terminal sliding-mode robot manipulator Electrical engineering. Electronics. Nuclear engineering Jaemin Baek verfasserin aut Woongyong Lee verfasserin aut Young Sam Lee verfasserin aut Soohee Han verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169897-169907 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169897-169907 https://doi.org/10.1109/ACCESS.2020.3022523 kostenfrei https://doaj.org/article/bdafeb79c67841f5822471ab684ccb72 kostenfrei https://ieeexplore.ieee.org/document/9187596/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169897-169907 |
language |
English |
source |
In IEEE Access 8(2020), Seite 169897-169907 volume:8 year:2020 pages:169897-169907 |
sourceStr |
In IEEE Access 8(2020), Seite 169897-169907 volume:8 year:2020 pages:169897-169907 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adaptive control time-delay control time-delay estimation nonsingular terminal sliding-mode robot manipulator Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jinsuk Choi @@aut@@ Jaemin Baek @@aut@@ Woongyong Lee @@aut@@ Young Sam Lee @@aut@@ Soohee Han @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ016142268 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016142268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310081137.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3022523</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016142268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbdafeb79c67841f5822471ab684ccb72</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinsuk Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-delay control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-delay estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonsingular terminal sliding-mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robot manipulator</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaemin Baek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Woongyong Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Sam Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soohee Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 169897-169907</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:169897-169907</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3022523</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bdafeb79c67841f5822471ab684ccb72</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9187596/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">169897-169907</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jinsuk Choi |
spellingShingle |
Jinsuk Choi misc TK1-9971 misc Adaptive control misc time-delay control misc time-delay estimation misc nonsingular terminal sliding-mode misc robot manipulator misc Electrical engineering. Electronics. Nuclear engineering Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators |
authorStr |
Jinsuk Choi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators Adaptive control time-delay control time-delay estimation nonsingular terminal sliding-mode robot manipulator |
topic |
misc TK1-9971 misc Adaptive control misc time-delay control misc time-delay estimation misc nonsingular terminal sliding-mode misc robot manipulator misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Adaptive control misc time-delay control misc time-delay estimation misc nonsingular terminal sliding-mode misc robot manipulator misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Adaptive control misc time-delay control misc time-delay estimation misc nonsingular terminal sliding-mode misc robot manipulator misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators |
ctrlnum |
(DE-627)DOAJ016142268 (DE-599)DOAJbdafeb79c67841f5822471ab684ccb72 |
title_full |
Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators |
author_sort |
Jinsuk Choi |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
169897 |
author_browse |
Jinsuk Choi Jaemin Baek Woongyong Lee Young Sam Lee Soohee Han |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jinsuk Choi |
doi_str_mv |
10.1109/ACCESS.2020.3022523 |
author2-role |
verfasserin |
title_sort |
adaptive model-free control with nonsingular terminal sliding-mode for application to robot manipulators |
callnumber |
TK1-9971 |
title_auth |
Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators |
abstract |
An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance. |
abstractGer |
An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance. |
abstract_unstemmed |
An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators |
url |
https://doi.org/10.1109/ACCESS.2020.3022523 https://doaj.org/article/bdafeb79c67841f5822471ab684ccb72 https://ieeexplore.ieee.org/document/9187596/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jaemin Baek Woongyong Lee Young Sam Lee Soohee Han |
author2Str |
Jaemin Baek Woongyong Lee Young Sam Lee Soohee Han |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3022523 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T19:14:15.239Z |
_version_ |
1803586429515726848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016142268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310081137.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3022523</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016142268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbdafeb79c67841f5822471ab684ccb72</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinsuk Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Model-Free Control With Nonsingular Terminal Sliding-Mode for Application to Robot Manipulators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An adaptive model-free control with nonsingular terminal sliding-mode (AMC-NTSM) is proposed for high precision motion control of robot manipulators. The proposed AMC-NTSM employs one-sample delayed measurements to cancel nonlinearities and uncertainties of manipulators and to subsequently obtain sufficiently simple models for easy control design. In order to maintain high gain controls even when the joint angles are close to the reference target values and accordingly achieve high precision and fast response control, a nonlinear sliding variable is also adopted instead of a linear one, asymptotically stabilizing controls by guaranteeing even a finite-time convergence. In addition, sliding variables are reflected on control inputs to support fast convergence while achieving uniform ultimate boundedness of tracking errors. The control gains of the proposed AMC-NTSM are adaptively adjusted over time according to the magnitude of the sliding variable. Such adaptive control gains become high for fast convergence or low for settling down to steady motion with better convergence precision, when necessary. The switching gains of the proposed AMC-NTSM are also adaptive to acceleration such that inherent time delay estimation (TDE) errors can be suppressed effectively regardless of their magnitudes. The simulation and experiment show that the proposed AMC-NTSM has good tracking performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-delay control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-delay estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonsingular terminal sliding-mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robot manipulator</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaemin Baek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Woongyong Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Sam Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soohee Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 169897-169907</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:169897-169907</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3022523</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bdafeb79c67841f5822471ab684ccb72</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9187596/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">169897-169907</subfield></datafield></record></collection>
|
score |
7.402893 |