Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate
The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by...
Ausführliche Beschreibung
Autor*in: |
Jinliang Wang [verfasserIn] Huazhou Hu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Materials Research and Technology - Elsevier, 2015, 9(2020), 5, Seite 9498-9505 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2020 ; number:5 ; pages:9498-9505 |
Links: |
---|
DOI / URN: |
10.1016/j.jmrt.2020.06.089 |
---|
Katalog-ID: |
DOAJ016334795 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ016334795 | ||
003 | DE-627 | ||
005 | 20230501182326.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmrt.2020.06.089 |2 doi | |
035 | |a (DE-627)DOAJ016334795 | ||
035 | |a (DE-599)DOAJ03099f563a4f41b28be7e0870bc65c4d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Jinliang Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical. | ||
650 | 4 | |a Lithium carbonate | |
650 | 4 | |a Lithium bicarbonate | |
650 | 4 | |a Pressure carbonation | |
650 | 4 | |a Microbubble | |
650 | 4 | |a Kinetics | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Huazhou Hu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Materials Research and Technology |d Elsevier, 2015 |g 9(2020), 5, Seite 9498-9505 |w (DE-627)768093163 |w (DE-600)2732709-7 |x 22140697 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2020 |g number:5 |g pages:9498-9505 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmrt.2020.06.089 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/03099f563a4f41b28be7e0870bc65c4d |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2238785420314903 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2238-7854 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2020 |e 5 |h 9498-9505 |
author_variant |
j w jw h h hh |
---|---|
matchkey_str |
article:22140697:2020----::irbblassepesrcroainopeaainfihu |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TN |
publishDate |
2020 |
allfields |
10.1016/j.jmrt.2020.06.089 doi (DE-627)DOAJ016334795 (DE-599)DOAJ03099f563a4f41b28be7e0870bc65c4d DE-627 ger DE-627 rakwb eng TN1-997 Jinliang Wang verfasserin aut Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical. Lithium carbonate Lithium bicarbonate Pressure carbonation Microbubble Kinetics Mining engineering. Metallurgy Huazhou Hu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 5, Seite 9498-9505 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:5 pages:9498-9505 https://doi.org/10.1016/j.jmrt.2020.06.089 kostenfrei https://doaj.org/article/03099f563a4f41b28be7e0870bc65c4d kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314903 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 5 9498-9505 |
spelling |
10.1016/j.jmrt.2020.06.089 doi (DE-627)DOAJ016334795 (DE-599)DOAJ03099f563a4f41b28be7e0870bc65c4d DE-627 ger DE-627 rakwb eng TN1-997 Jinliang Wang verfasserin aut Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical. Lithium carbonate Lithium bicarbonate Pressure carbonation Microbubble Kinetics Mining engineering. Metallurgy Huazhou Hu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 5, Seite 9498-9505 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:5 pages:9498-9505 https://doi.org/10.1016/j.jmrt.2020.06.089 kostenfrei https://doaj.org/article/03099f563a4f41b28be7e0870bc65c4d kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314903 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 5 9498-9505 |
allfields_unstemmed |
10.1016/j.jmrt.2020.06.089 doi (DE-627)DOAJ016334795 (DE-599)DOAJ03099f563a4f41b28be7e0870bc65c4d DE-627 ger DE-627 rakwb eng TN1-997 Jinliang Wang verfasserin aut Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical. Lithium carbonate Lithium bicarbonate Pressure carbonation Microbubble Kinetics Mining engineering. Metallurgy Huazhou Hu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 5, Seite 9498-9505 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:5 pages:9498-9505 https://doi.org/10.1016/j.jmrt.2020.06.089 kostenfrei https://doaj.org/article/03099f563a4f41b28be7e0870bc65c4d kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314903 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 5 9498-9505 |
allfieldsGer |
10.1016/j.jmrt.2020.06.089 doi (DE-627)DOAJ016334795 (DE-599)DOAJ03099f563a4f41b28be7e0870bc65c4d DE-627 ger DE-627 rakwb eng TN1-997 Jinliang Wang verfasserin aut Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical. Lithium carbonate Lithium bicarbonate Pressure carbonation Microbubble Kinetics Mining engineering. Metallurgy Huazhou Hu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 5, Seite 9498-9505 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:5 pages:9498-9505 https://doi.org/10.1016/j.jmrt.2020.06.089 kostenfrei https://doaj.org/article/03099f563a4f41b28be7e0870bc65c4d kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314903 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 5 9498-9505 |
allfieldsSound |
10.1016/j.jmrt.2020.06.089 doi (DE-627)DOAJ016334795 (DE-599)DOAJ03099f563a4f41b28be7e0870bc65c4d DE-627 ger DE-627 rakwb eng TN1-997 Jinliang Wang verfasserin aut Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical. Lithium carbonate Lithium bicarbonate Pressure carbonation Microbubble Kinetics Mining engineering. Metallurgy Huazhou Hu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 5, Seite 9498-9505 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:5 pages:9498-9505 https://doi.org/10.1016/j.jmrt.2020.06.089 kostenfrei https://doaj.org/article/03099f563a4f41b28be7e0870bc65c4d kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314903 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 5 9498-9505 |
language |
English |
source |
In Journal of Materials Research and Technology 9(2020), 5, Seite 9498-9505 volume:9 year:2020 number:5 pages:9498-9505 |
sourceStr |
In Journal of Materials Research and Technology 9(2020), 5, Seite 9498-9505 volume:9 year:2020 number:5 pages:9498-9505 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lithium carbonate Lithium bicarbonate Pressure carbonation Microbubble Kinetics Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Journal of Materials Research and Technology |
authorswithroles_txt_mv |
Jinliang Wang @@aut@@ Huazhou Hu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
768093163 |
id |
DOAJ016334795 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016334795</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501182326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2020.06.089</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016334795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ03099f563a4f41b28be7e0870bc65c4d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinliang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium carbonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium bicarbonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure carbonation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbubble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huazhou Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">9(2020), 5, Seite 9498-9505</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:9498-9505</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2020.06.089</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/03099f563a4f41b28be7e0870bc65c4d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2238785420314903</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">9498-9505</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jinliang Wang |
spellingShingle |
Jinliang Wang misc TN1-997 misc Lithium carbonate misc Lithium bicarbonate misc Pressure carbonation misc Microbubble misc Kinetics misc Mining engineering. Metallurgy Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate |
authorStr |
Jinliang Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768093163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
22140697 |
topic_title |
TN1-997 Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate Lithium carbonate Lithium bicarbonate Pressure carbonation Microbubble Kinetics |
topic |
misc TN1-997 misc Lithium carbonate misc Lithium bicarbonate misc Pressure carbonation misc Microbubble misc Kinetics misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc Lithium carbonate misc Lithium bicarbonate misc Pressure carbonation misc Microbubble misc Kinetics misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc Lithium carbonate misc Lithium bicarbonate misc Pressure carbonation misc Microbubble misc Kinetics misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Materials Research and Technology |
hierarchy_parent_id |
768093163 |
hierarchy_top_title |
Journal of Materials Research and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768093163 (DE-600)2732709-7 |
title |
Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate |
ctrlnum |
(DE-627)DOAJ016334795 (DE-599)DOAJ03099f563a4f41b28be7e0870bc65c4d |
title_full |
Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate |
author_sort |
Jinliang Wang |
journal |
Journal of Materials Research and Technology |
journalStr |
Journal of Materials Research and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
9498 |
author_browse |
Jinliang Wang Huazhou Hu |
container_volume |
9 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Jinliang Wang |
doi_str_mv |
10.1016/j.jmrt.2020.06.089 |
author2-role |
verfasserin |
title_sort |
microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate |
callnumber |
TN1-997 |
title_auth |
Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate |
abstract |
The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical. |
abstractGer |
The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical. |
abstract_unstemmed |
The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate |
url |
https://doi.org/10.1016/j.jmrt.2020.06.089 https://doaj.org/article/03099f563a4f41b28be7e0870bc65c4d http://www.sciencedirect.com/science/article/pii/S2238785420314903 https://doaj.org/toc/2238-7854 |
remote_bool |
true |
author2 |
Huazhou Hu |
author2Str |
Huazhou Hu |
ppnlink |
768093163 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmrt.2020.06.089 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T20:23:17.090Z |
_version_ |
1803590772554989568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016334795</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501182326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2020.06.089</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016334795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ03099f563a4f41b28be7e0870bc65c4d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinliang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The direct carbonation of industrial grade Li2CO3 using pure CO2 induces the formation of impurity-free water-soluble LiHCO3. In this study, microbubble-assisted pressure carbonation using CO2 is performed on industrial grade Li2CO3 to facilitate LiHCO3 formation. The conversion rate is increased by 20–30% compared to that of conventional carbonation methods. The optimum conditions for CO2 carbonation are determined as follows: reaction temperature of 25 °C, pulp density of 60 g L−1, CO2 flow rate of 1.0 L min−1, CO2 partial pressure of 0.4 MPa, reaction time of 120 min, and stirring speed of 400 rpm. The carbonation kinetics of the material is shown to be controlled by surface chemical reactions, with an activation energy of −8.705 kJ mol−1 obtained at 25–55 °C. The mechanism of the surface chemical reactions is further corroborated by XRD patterns and SEM images of the material and the generated residues. Reprecipitation of 83.14% Li in the LiHCO3 solution with 99.99% pure Li2CO3 is achieved via purification and decomposition. This proves the process is possible and practical.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium carbonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium bicarbonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure carbonation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbubble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huazhou Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">9(2020), 5, Seite 9498-9505</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:9498-9505</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2020.06.089</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/03099f563a4f41b28be7e0870bc65c4d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2238785420314903</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">9498-9505</subfield></datafield></record></collection>
|
score |
7.402521 |