K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases
Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous...
Ausführliche Beschreibung
Autor*in: |
Hongzhi Wang [verfasserIn] Zhiying Miao [verfasserIn] Chaobao Zhang [verfasserIn] Xiaona Wei [verfasserIn] Xiangqi Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Computational and Structural Biotechnology Journal - Elsevier, 2013, 19(2021), Seite 1966-1975 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2021 ; pages:1966-1975 |
Links: |
---|
DOI / URN: |
10.1016/j.csbj.2021.04.004 |
---|
Katalog-ID: |
DOAJ016584619 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ016584619 | ||
003 | DE-627 | ||
005 | 20230502150020.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.csbj.2021.04.004 |2 doi | |
035 | |a (DE-627)DOAJ016584619 | ||
035 | |a (DE-599)DOAJac908ae6543f4599b020de90d62b9e51 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
100 | 0 | |a Hongzhi Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases. | ||
650 | 4 | |a Software | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Python | |
650 | 4 | |a COVID-19 | |
650 | 4 | |a SEIR model | |
650 | 4 | |a Simulation analysis | |
653 | 0 | |a Biotechnology | |
700 | 0 | |a Zhiying Miao |e verfasserin |4 aut | |
700 | 0 | |a Chaobao Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xiaona Wei |e verfasserin |4 aut | |
700 | 0 | |a Xiangqi Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Computational and Structural Biotechnology Journal |d Elsevier, 2013 |g 19(2021), Seite 1966-1975 |w (DE-627)731890086 |w (DE-600)2694435-2 |x 20010370 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2021 |g pages:1966-1975 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.csbj.2021.04.004 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ac908ae6543f4599b020de90d62b9e51 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2001037021001124 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2001-0370 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2021 |h 1966-1975 |
author_variant |
h w hw z m zm c z cz x w xw x l xl |
---|---|
matchkey_str |
article:20010370:2021----::sismsmlcsoiesfwrfriuaighsra |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TP |
publishDate |
2021 |
allfields |
10.1016/j.csbj.2021.04.004 doi (DE-627)DOAJ016584619 (DE-599)DOAJac908ae6543f4599b020de90d62b9e51 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Hongzhi Wang verfasserin aut K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases. Software Artificial intelligence Python COVID-19 SEIR model Simulation analysis Biotechnology Zhiying Miao verfasserin aut Chaobao Zhang verfasserin aut Xiaona Wei verfasserin aut Xiangqi Li verfasserin aut In Computational and Structural Biotechnology Journal Elsevier, 2013 19(2021), Seite 1966-1975 (DE-627)731890086 (DE-600)2694435-2 20010370 nnns volume:19 year:2021 pages:1966-1975 https://doi.org/10.1016/j.csbj.2021.04.004 kostenfrei https://doaj.org/article/ac908ae6543f4599b020de90d62b9e51 kostenfrei http://www.sciencedirect.com/science/article/pii/S2001037021001124 kostenfrei https://doaj.org/toc/2001-0370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2021 1966-1975 |
spelling |
10.1016/j.csbj.2021.04.004 doi (DE-627)DOAJ016584619 (DE-599)DOAJac908ae6543f4599b020de90d62b9e51 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Hongzhi Wang verfasserin aut K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases. Software Artificial intelligence Python COVID-19 SEIR model Simulation analysis Biotechnology Zhiying Miao verfasserin aut Chaobao Zhang verfasserin aut Xiaona Wei verfasserin aut Xiangqi Li verfasserin aut In Computational and Structural Biotechnology Journal Elsevier, 2013 19(2021), Seite 1966-1975 (DE-627)731890086 (DE-600)2694435-2 20010370 nnns volume:19 year:2021 pages:1966-1975 https://doi.org/10.1016/j.csbj.2021.04.004 kostenfrei https://doaj.org/article/ac908ae6543f4599b020de90d62b9e51 kostenfrei http://www.sciencedirect.com/science/article/pii/S2001037021001124 kostenfrei https://doaj.org/toc/2001-0370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2021 1966-1975 |
allfields_unstemmed |
10.1016/j.csbj.2021.04.004 doi (DE-627)DOAJ016584619 (DE-599)DOAJac908ae6543f4599b020de90d62b9e51 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Hongzhi Wang verfasserin aut K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases. Software Artificial intelligence Python COVID-19 SEIR model Simulation analysis Biotechnology Zhiying Miao verfasserin aut Chaobao Zhang verfasserin aut Xiaona Wei verfasserin aut Xiangqi Li verfasserin aut In Computational and Structural Biotechnology Journal Elsevier, 2013 19(2021), Seite 1966-1975 (DE-627)731890086 (DE-600)2694435-2 20010370 nnns volume:19 year:2021 pages:1966-1975 https://doi.org/10.1016/j.csbj.2021.04.004 kostenfrei https://doaj.org/article/ac908ae6543f4599b020de90d62b9e51 kostenfrei http://www.sciencedirect.com/science/article/pii/S2001037021001124 kostenfrei https://doaj.org/toc/2001-0370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2021 1966-1975 |
allfieldsGer |
10.1016/j.csbj.2021.04.004 doi (DE-627)DOAJ016584619 (DE-599)DOAJac908ae6543f4599b020de90d62b9e51 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Hongzhi Wang verfasserin aut K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases. Software Artificial intelligence Python COVID-19 SEIR model Simulation analysis Biotechnology Zhiying Miao verfasserin aut Chaobao Zhang verfasserin aut Xiaona Wei verfasserin aut Xiangqi Li verfasserin aut In Computational and Structural Biotechnology Journal Elsevier, 2013 19(2021), Seite 1966-1975 (DE-627)731890086 (DE-600)2694435-2 20010370 nnns volume:19 year:2021 pages:1966-1975 https://doi.org/10.1016/j.csbj.2021.04.004 kostenfrei https://doaj.org/article/ac908ae6543f4599b020de90d62b9e51 kostenfrei http://www.sciencedirect.com/science/article/pii/S2001037021001124 kostenfrei https://doaj.org/toc/2001-0370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2021 1966-1975 |
allfieldsSound |
10.1016/j.csbj.2021.04.004 doi (DE-627)DOAJ016584619 (DE-599)DOAJac908ae6543f4599b020de90d62b9e51 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Hongzhi Wang verfasserin aut K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases. Software Artificial intelligence Python COVID-19 SEIR model Simulation analysis Biotechnology Zhiying Miao verfasserin aut Chaobao Zhang verfasserin aut Xiaona Wei verfasserin aut Xiangqi Li verfasserin aut In Computational and Structural Biotechnology Journal Elsevier, 2013 19(2021), Seite 1966-1975 (DE-627)731890086 (DE-600)2694435-2 20010370 nnns volume:19 year:2021 pages:1966-1975 https://doi.org/10.1016/j.csbj.2021.04.004 kostenfrei https://doaj.org/article/ac908ae6543f4599b020de90d62b9e51 kostenfrei http://www.sciencedirect.com/science/article/pii/S2001037021001124 kostenfrei https://doaj.org/toc/2001-0370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2021 1966-1975 |
language |
English |
source |
In Computational and Structural Biotechnology Journal 19(2021), Seite 1966-1975 volume:19 year:2021 pages:1966-1975 |
sourceStr |
In Computational and Structural Biotechnology Journal 19(2021), Seite 1966-1975 volume:19 year:2021 pages:1966-1975 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Software Artificial intelligence Python COVID-19 SEIR model Simulation analysis Biotechnology |
isfreeaccess_bool |
true |
container_title |
Computational and Structural Biotechnology Journal |
authorswithroles_txt_mv |
Hongzhi Wang @@aut@@ Zhiying Miao @@aut@@ Chaobao Zhang @@aut@@ Xiaona Wei @@aut@@ Xiangqi Li @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
731890086 |
id |
DOAJ016584619 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016584619</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502150020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.csbj.2021.04.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016584619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJac908ae6543f4599b020de90d62b9e51</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongzhi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SEIR model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiying Miao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaobao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaona Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangqi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Computational and Structural Biotechnology Journal</subfield><subfield code="d">Elsevier, 2013</subfield><subfield code="g">19(2021), Seite 1966-1975</subfield><subfield code="w">(DE-627)731890086</subfield><subfield code="w">(DE-600)2694435-2</subfield><subfield code="x">20010370</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:1966-1975</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.csbj.2021.04.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ac908ae6543f4599b020de90d62b9e51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2001037021001124</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2001-0370</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2021</subfield><subfield code="h">1966-1975</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hongzhi Wang |
spellingShingle |
Hongzhi Wang misc TP248.13-248.65 misc Software misc Artificial intelligence misc Python misc COVID-19 misc SEIR model misc Simulation analysis misc Biotechnology K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases |
authorStr |
Hongzhi Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)731890086 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
20010370 |
topic_title |
TP248.13-248.65 K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases Software Artificial intelligence Python COVID-19 SEIR model Simulation analysis |
topic |
misc TP248.13-248.65 misc Software misc Artificial intelligence misc Python misc COVID-19 misc SEIR model misc Simulation analysis misc Biotechnology |
topic_unstemmed |
misc TP248.13-248.65 misc Software misc Artificial intelligence misc Python misc COVID-19 misc SEIR model misc Simulation analysis misc Biotechnology |
topic_browse |
misc TP248.13-248.65 misc Software misc Artificial intelligence misc Python misc COVID-19 misc SEIR model misc Simulation analysis misc Biotechnology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computational and Structural Biotechnology Journal |
hierarchy_parent_id |
731890086 |
hierarchy_top_title |
Computational and Structural Biotechnology Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)731890086 (DE-600)2694435-2 |
title |
K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases |
ctrlnum |
(DE-627)DOAJ016584619 (DE-599)DOAJac908ae6543f4599b020de90d62b9e51 |
title_full |
K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases |
author_sort |
Hongzhi Wang |
journal |
Computational and Structural Biotechnology Journal |
journalStr |
Computational and Structural Biotechnology Journal |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1966 |
author_browse |
Hongzhi Wang Zhiying Miao Chaobao Zhang Xiaona Wei Xiangqi Li |
container_volume |
19 |
class |
TP248.13-248.65 |
format_se |
Elektronische Aufsätze |
author-letter |
Hongzhi Wang |
doi_str_mv |
10.1016/j.csbj.2021.04.004 |
author2-role |
verfasserin |
title_sort |
k-seir-sim: a simple customized software for simulating the spread of infectious diseases |
callnumber |
TP248.13-248.65 |
title_auth |
K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases |
abstract |
Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases. |
abstractGer |
Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases. |
abstract_unstemmed |
Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases |
url |
https://doi.org/10.1016/j.csbj.2021.04.004 https://doaj.org/article/ac908ae6543f4599b020de90d62b9e51 http://www.sciencedirect.com/science/article/pii/S2001037021001124 https://doaj.org/toc/2001-0370 |
remote_bool |
true |
author2 |
Zhiying Miao Chaobao Zhang Xiaona Wei Xiangqi Li |
author2Str |
Zhiying Miao Chaobao Zhang Xiaona Wei Xiangqi Li |
ppnlink |
731890086 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.csbj.2021.04.004 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-03T21:53:59.294Z |
_version_ |
1803596479118442496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016584619</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502150020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.csbj.2021.04.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016584619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJac908ae6543f4599b020de90d62b9e51</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongzhi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the examples of the COVID-19 outbreak in the United States, Wuhan city of China, Diamond Princess, and France. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, no installation is required and the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SEIR model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiying Miao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaobao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaona Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangqi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Computational and Structural Biotechnology Journal</subfield><subfield code="d">Elsevier, 2013</subfield><subfield code="g">19(2021), Seite 1966-1975</subfield><subfield code="w">(DE-627)731890086</subfield><subfield code="w">(DE-600)2694435-2</subfield><subfield code="x">20010370</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:1966-1975</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.csbj.2021.04.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ac908ae6543f4599b020de90d62b9e51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2001037021001124</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2001-0370</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2021</subfield><subfield code="h">1966-1975</subfield></datafield></record></collection>
|
score |
7.399419 |