A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application
Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in larg...
Ausführliche Beschreibung
Autor*in: |
Ying Ouyang [verfasserIn] Theodor D. Leininger [verfasserIn] Heidi Renninger [verfasserIn] Emile S. Gardiner [verfasserIn] Lisa Samuelson [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Climate - MDPI AG, 2013, 9(2021), 2, p 22 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; number:2, p 22 |
Links: |
---|
DOI / URN: |
10.3390/cli9020022 |
---|
Katalog-ID: |
DOAJ016591038 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ016591038 | ||
003 | DE-627 | ||
005 | 20240414072733.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/cli9020022 |2 doi | |
035 | |a (DE-627)DOAJ016591038 | ||
035 | |a (DE-599)DOAJ8ade7f1e2f8f407cb12f4d4456171ee0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Ying Ouyang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner. | ||
650 | 4 | |a cottonwood | |
650 | 4 | |a climate change | |
650 | 4 | |a sap flux | |
650 | 4 | |a STELLA | |
650 | 4 | |a vapor pressure deficit | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Theodor D. Leininger |e verfasserin |4 aut | |
700 | 0 | |a Heidi Renninger |e verfasserin |4 aut | |
700 | 0 | |a Emile S. Gardiner |e verfasserin |4 aut | |
700 | 0 | |a Lisa Samuelson |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Climate |d MDPI AG, 2013 |g 9(2021), 2, p 22 |w (DE-627)750089245 |w (DE-600)2720343-8 |x 22251154 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g number:2, p 22 |
856 | 4 | 0 | |u https://doi.org/10.3390/cli9020022 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8ade7f1e2f8f407cb12f4d4456171ee0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2225-1154/9/2/22 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2225-1154 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |e 2, p 22 |
author_variant |
y o yo t d l tdl h r hr e s g esg l s ls |
---|---|
matchkey_str |
article:22251154:2021----::mdlosesatrctowowtrlwsnajsevprrsueeiiascaewt |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/cli9020022 doi (DE-627)DOAJ016591038 (DE-599)DOAJ8ade7f1e2f8f407cb12f4d4456171ee0 DE-627 ger DE-627 rakwb eng Ying Ouyang verfasserin aut A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner. cottonwood climate change sap flux STELLA vapor pressure deficit Science Q Theodor D. Leininger verfasserin aut Heidi Renninger verfasserin aut Emile S. Gardiner verfasserin aut Lisa Samuelson verfasserin aut In Climate MDPI AG, 2013 9(2021), 2, p 22 (DE-627)750089245 (DE-600)2720343-8 22251154 nnns volume:9 year:2021 number:2, p 22 https://doi.org/10.3390/cli9020022 kostenfrei https://doaj.org/article/8ade7f1e2f8f407cb12f4d4456171ee0 kostenfrei https://www.mdpi.com/2225-1154/9/2/22 kostenfrei https://doaj.org/toc/2225-1154 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2, p 22 |
spelling |
10.3390/cli9020022 doi (DE-627)DOAJ016591038 (DE-599)DOAJ8ade7f1e2f8f407cb12f4d4456171ee0 DE-627 ger DE-627 rakwb eng Ying Ouyang verfasserin aut A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner. cottonwood climate change sap flux STELLA vapor pressure deficit Science Q Theodor D. Leininger verfasserin aut Heidi Renninger verfasserin aut Emile S. Gardiner verfasserin aut Lisa Samuelson verfasserin aut In Climate MDPI AG, 2013 9(2021), 2, p 22 (DE-627)750089245 (DE-600)2720343-8 22251154 nnns volume:9 year:2021 number:2, p 22 https://doi.org/10.3390/cli9020022 kostenfrei https://doaj.org/article/8ade7f1e2f8f407cb12f4d4456171ee0 kostenfrei https://www.mdpi.com/2225-1154/9/2/22 kostenfrei https://doaj.org/toc/2225-1154 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2, p 22 |
allfields_unstemmed |
10.3390/cli9020022 doi (DE-627)DOAJ016591038 (DE-599)DOAJ8ade7f1e2f8f407cb12f4d4456171ee0 DE-627 ger DE-627 rakwb eng Ying Ouyang verfasserin aut A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner. cottonwood climate change sap flux STELLA vapor pressure deficit Science Q Theodor D. Leininger verfasserin aut Heidi Renninger verfasserin aut Emile S. Gardiner verfasserin aut Lisa Samuelson verfasserin aut In Climate MDPI AG, 2013 9(2021), 2, p 22 (DE-627)750089245 (DE-600)2720343-8 22251154 nnns volume:9 year:2021 number:2, p 22 https://doi.org/10.3390/cli9020022 kostenfrei https://doaj.org/article/8ade7f1e2f8f407cb12f4d4456171ee0 kostenfrei https://www.mdpi.com/2225-1154/9/2/22 kostenfrei https://doaj.org/toc/2225-1154 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2, p 22 |
allfieldsGer |
10.3390/cli9020022 doi (DE-627)DOAJ016591038 (DE-599)DOAJ8ade7f1e2f8f407cb12f4d4456171ee0 DE-627 ger DE-627 rakwb eng Ying Ouyang verfasserin aut A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner. cottonwood climate change sap flux STELLA vapor pressure deficit Science Q Theodor D. Leininger verfasserin aut Heidi Renninger verfasserin aut Emile S. Gardiner verfasserin aut Lisa Samuelson verfasserin aut In Climate MDPI AG, 2013 9(2021), 2, p 22 (DE-627)750089245 (DE-600)2720343-8 22251154 nnns volume:9 year:2021 number:2, p 22 https://doi.org/10.3390/cli9020022 kostenfrei https://doaj.org/article/8ade7f1e2f8f407cb12f4d4456171ee0 kostenfrei https://www.mdpi.com/2225-1154/9/2/22 kostenfrei https://doaj.org/toc/2225-1154 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2, p 22 |
allfieldsSound |
10.3390/cli9020022 doi (DE-627)DOAJ016591038 (DE-599)DOAJ8ade7f1e2f8f407cb12f4d4456171ee0 DE-627 ger DE-627 rakwb eng Ying Ouyang verfasserin aut A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner. cottonwood climate change sap flux STELLA vapor pressure deficit Science Q Theodor D. Leininger verfasserin aut Heidi Renninger verfasserin aut Emile S. Gardiner verfasserin aut Lisa Samuelson verfasserin aut In Climate MDPI AG, 2013 9(2021), 2, p 22 (DE-627)750089245 (DE-600)2720343-8 22251154 nnns volume:9 year:2021 number:2, p 22 https://doi.org/10.3390/cli9020022 kostenfrei https://doaj.org/article/8ade7f1e2f8f407cb12f4d4456171ee0 kostenfrei https://www.mdpi.com/2225-1154/9/2/22 kostenfrei https://doaj.org/toc/2225-1154 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2, p 22 |
language |
English |
source |
In Climate 9(2021), 2, p 22 volume:9 year:2021 number:2, p 22 |
sourceStr |
In Climate 9(2021), 2, p 22 volume:9 year:2021 number:2, p 22 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cottonwood climate change sap flux STELLA vapor pressure deficit Science Q |
isfreeaccess_bool |
true |
container_title |
Climate |
authorswithroles_txt_mv |
Ying Ouyang @@aut@@ Theodor D. Leininger @@aut@@ Heidi Renninger @@aut@@ Emile S. Gardiner @@aut@@ Lisa Samuelson @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
750089245 |
id |
DOAJ016591038 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016591038</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414072733.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cli9020022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016591038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8ade7f1e2f8f407cb12f4d4456171ee0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ying Ouyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cottonwood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sap flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">STELLA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vapor pressure deficit</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Theodor D. Leininger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heidi Renninger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emile S. Gardiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lisa Samuelson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Climate</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2021), 2, p 22</subfield><subfield code="w">(DE-627)750089245</subfield><subfield code="w">(DE-600)2720343-8</subfield><subfield code="x">22251154</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 22</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cli9020022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8ade7f1e2f8f407cb12f4d4456171ee0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2225-1154/9/2/22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2225-1154</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 22</subfield></datafield></record></collection>
|
author |
Ying Ouyang |
spellingShingle |
Ying Ouyang misc cottonwood misc climate change misc sap flux misc STELLA misc vapor pressure deficit misc Science misc Q A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application |
authorStr |
Ying Ouyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750089245 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22251154 |
topic_title |
A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application cottonwood climate change sap flux STELLA vapor pressure deficit |
topic |
misc cottonwood misc climate change misc sap flux misc STELLA misc vapor pressure deficit misc Science misc Q |
topic_unstemmed |
misc cottonwood misc climate change misc sap flux misc STELLA misc vapor pressure deficit misc Science misc Q |
topic_browse |
misc cottonwood misc climate change misc sap flux misc STELLA misc vapor pressure deficit misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Climate |
hierarchy_parent_id |
750089245 |
hierarchy_top_title |
Climate |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750089245 (DE-600)2720343-8 |
title |
A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application |
ctrlnum |
(DE-627)DOAJ016591038 (DE-599)DOAJ8ade7f1e2f8f407cb12f4d4456171ee0 |
title_full |
A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application |
author_sort |
Ying Ouyang |
journal |
Climate |
journalStr |
Climate |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Ying Ouyang Theodor D. Leininger Heidi Renninger Emile S. Gardiner Lisa Samuelson |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Ying Ouyang |
doi_str_mv |
10.3390/cli9020022 |
author2-role |
verfasserin |
title_sort |
model to assess eastern cottonwood water flow using adjusted vapor pressure deficit associated with a climate change impact application |
title_auth |
A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application |
abstract |
Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner. |
abstractGer |
Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner. |
abstract_unstemmed |
Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 22 |
title_short |
A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application |
url |
https://doi.org/10.3390/cli9020022 https://doaj.org/article/8ade7f1e2f8f407cb12f4d4456171ee0 https://www.mdpi.com/2225-1154/9/2/22 https://doaj.org/toc/2225-1154 |
remote_bool |
true |
author2 |
Theodor D. Leininger Heidi Renninger Emile S. Gardiner Lisa Samuelson |
author2Str |
Theodor D. Leininger Heidi Renninger Emile S. Gardiner Lisa Samuelson |
ppnlink |
750089245 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/cli9020022 |
up_date |
2024-07-03T21:56:09.522Z |
_version_ |
1803596615681835008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016591038</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414072733.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cli9020022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016591038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8ade7f1e2f8f407cb12f4d4456171ee0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ying Ouyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Model to Assess Eastern Cottonwood Water Flow Using Adjusted Vapor Pressure Deficit Associated with a Climate Change Impact Application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Short-rotation woody crops have maintained global prominence as biomass feedstocks for bioenergy, in part due to their fast growth and coppicing ability. However, the water usage efficiency of some woody biomass crops suggests potential adverse hydrological impacts. Monitoring tree water use in large-scale plantations would be very time-consuming and cost-prohibitive because it would typically require the installation and maintenance of sap flux sensors and dataloggers or other instruments. We developed a model to estimate the sap flux of eastern cottonwood (<i<Populus deltoides</i<. Bartr. ex Marsh.)) grown in bioenergy plantations. This model is based on adjusted vapor pressure deficit (VPD) using Structural Thinking and Experiential Learning Laboratory with Animation (STELLA) software (Architect Version 1.8.2), and is validated using the sap flux data collected from a 4-year-old eastern cottonwood biomass production plantation. With R<sup<2</sup< values greater than 0.79 and Nash Sutcliffe coefficients greater than 0.69 and <i<p</i< values < 0.001, a strong agreement was obtained between measured and predicted diurnal sap flux patterns and annual sap flux cycles. We further validated the model using eastern cottonwood sap flux data from Aiken, South Carolina, USA with a good agreement between method predictions and field measurements. The model was able to predict a typical diurnal pattern, with sap flux density increasing during the day and decreasing at night for a 5-year-old cottonwood plantation. We found that a 10% increase in VPD due to climate change increased the sap flux of eastern cottonwood by about 5%. Our model also forecasted annual sap flux characteristics of measured cycles that increased in the spring, reached a maximum in the summer, and decreased in the fall. The model developed here can be adapted to estimate sap flux of other trees species in a time- and cost-effective manner.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cottonwood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sap flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">STELLA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vapor pressure deficit</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Theodor D. Leininger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heidi Renninger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emile S. Gardiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lisa Samuelson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Climate</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2021), 2, p 22</subfield><subfield code="w">(DE-627)750089245</subfield><subfield code="w">(DE-600)2720343-8</subfield><subfield code="x">22251154</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 22</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cli9020022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8ade7f1e2f8f407cb12f4d4456171ee0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2225-1154/9/2/22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2225-1154</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 22</subfield></datafield></record></collection>
|
score |
7.4014635 |