STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging
The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is...
Ausführliche Beschreibung
Autor*in: |
María de la Mata [verfasserIn] Sergio I. Molina [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanomaterials - MDPI AG, 2012, 12(2022), 3, p 337 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:3, p 337 |
Links: |
---|
DOI / URN: |
10.3390/nano12030337 |
---|
Katalog-ID: |
DOAJ016643046 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ016643046 | ||
003 | DE-627 | ||
005 | 20240414202406.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nano12030337 |2 doi | |
035 | |a (DE-627)DOAJ016643046 | ||
035 | |a (DE-599)DOAJ0f3002d67bf34af9b502b75f3bdb0d74 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a María de la Mata |e verfasserin |4 aut | |
245 | 1 | 0 | |a STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies. | ||
650 | 4 | |a STEM atomic-resolution | |
650 | 4 | |a spectroscopy | |
650 | 4 | |a VEELS | |
650 | 4 | |a 4D-STEM | |
650 | 4 | |a electric field mapping | |
650 | 4 | |a in situ | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Sergio I. Molina |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanomaterials |d MDPI AG, 2012 |g 12(2022), 3, p 337 |w (DE-627)718627199 |w (DE-600)2662255-5 |x 20794991 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:3, p 337 |
856 | 4 | 0 | |u https://doi.org/10.3390/nano12030337 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0f3002d67bf34af9b502b75f3bdb0d74 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-4991/12/3/337 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-4991 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 3, p 337 |
author_variant |
m d l m mdlm s i m sim |
---|---|
matchkey_str |
article:20794991:2022----::tmolfreiodcocaatrztobynhg |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QD |
publishDate |
2022 |
allfields |
10.3390/nano12030337 doi (DE-627)DOAJ016643046 (DE-599)DOAJ0f3002d67bf34af9b502b75f3bdb0d74 DE-627 ger DE-627 rakwb eng QD1-999 María de la Mata verfasserin aut STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies. STEM atomic-resolution spectroscopy VEELS 4D-STEM electric field mapping in situ Chemistry Sergio I. Molina verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 337 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 337 https://doi.org/10.3390/nano12030337 kostenfrei https://doaj.org/article/0f3002d67bf34af9b502b75f3bdb0d74 kostenfrei https://www.mdpi.com/2079-4991/12/3/337 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 337 |
spelling |
10.3390/nano12030337 doi (DE-627)DOAJ016643046 (DE-599)DOAJ0f3002d67bf34af9b502b75f3bdb0d74 DE-627 ger DE-627 rakwb eng QD1-999 María de la Mata verfasserin aut STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies. STEM atomic-resolution spectroscopy VEELS 4D-STEM electric field mapping in situ Chemistry Sergio I. Molina verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 337 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 337 https://doi.org/10.3390/nano12030337 kostenfrei https://doaj.org/article/0f3002d67bf34af9b502b75f3bdb0d74 kostenfrei https://www.mdpi.com/2079-4991/12/3/337 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 337 |
allfields_unstemmed |
10.3390/nano12030337 doi (DE-627)DOAJ016643046 (DE-599)DOAJ0f3002d67bf34af9b502b75f3bdb0d74 DE-627 ger DE-627 rakwb eng QD1-999 María de la Mata verfasserin aut STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies. STEM atomic-resolution spectroscopy VEELS 4D-STEM electric field mapping in situ Chemistry Sergio I. Molina verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 337 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 337 https://doi.org/10.3390/nano12030337 kostenfrei https://doaj.org/article/0f3002d67bf34af9b502b75f3bdb0d74 kostenfrei https://www.mdpi.com/2079-4991/12/3/337 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 337 |
allfieldsGer |
10.3390/nano12030337 doi (DE-627)DOAJ016643046 (DE-599)DOAJ0f3002d67bf34af9b502b75f3bdb0d74 DE-627 ger DE-627 rakwb eng QD1-999 María de la Mata verfasserin aut STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies. STEM atomic-resolution spectroscopy VEELS 4D-STEM electric field mapping in situ Chemistry Sergio I. Molina verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 337 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 337 https://doi.org/10.3390/nano12030337 kostenfrei https://doaj.org/article/0f3002d67bf34af9b502b75f3bdb0d74 kostenfrei https://www.mdpi.com/2079-4991/12/3/337 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 337 |
allfieldsSound |
10.3390/nano12030337 doi (DE-627)DOAJ016643046 (DE-599)DOAJ0f3002d67bf34af9b502b75f3bdb0d74 DE-627 ger DE-627 rakwb eng QD1-999 María de la Mata verfasserin aut STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies. STEM atomic-resolution spectroscopy VEELS 4D-STEM electric field mapping in situ Chemistry Sergio I. Molina verfasserin aut In Nanomaterials MDPI AG, 2012 12(2022), 3, p 337 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:12 year:2022 number:3, p 337 https://doi.org/10.3390/nano12030337 kostenfrei https://doaj.org/article/0f3002d67bf34af9b502b75f3bdb0d74 kostenfrei https://www.mdpi.com/2079-4991/12/3/337 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 337 |
language |
English |
source |
In Nanomaterials 12(2022), 3, p 337 volume:12 year:2022 number:3, p 337 |
sourceStr |
In Nanomaterials 12(2022), 3, p 337 volume:12 year:2022 number:3, p 337 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
STEM atomic-resolution spectroscopy VEELS 4D-STEM electric field mapping in situ Chemistry |
isfreeaccess_bool |
true |
container_title |
Nanomaterials |
authorswithroles_txt_mv |
María de la Mata @@aut@@ Sergio I. Molina @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718627199 |
id |
DOAJ016643046 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016643046</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414202406.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano12030337</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016643046</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0f3002d67bf34af9b502b75f3bdb0d74</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">María de la Mata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">STEM atomic-resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VEELS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">4D-STEM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric field mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in situ</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergio I. Molina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 3, p 337</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 337</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano12030337</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0f3002d67bf34af9b502b75f3bdb0d74</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/12/3/337</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 337</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
María de la Mata |
spellingShingle |
María de la Mata misc QD1-999 misc STEM atomic-resolution misc spectroscopy misc VEELS misc 4D-STEM misc electric field mapping misc in situ misc Chemistry STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging |
authorStr |
María de la Mata |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627199 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
20794991 |
topic_title |
QD1-999 STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging STEM atomic-resolution spectroscopy VEELS 4D-STEM electric field mapping in situ |
topic |
misc QD1-999 misc STEM atomic-resolution misc spectroscopy misc VEELS misc 4D-STEM misc electric field mapping misc in situ misc Chemistry |
topic_unstemmed |
misc QD1-999 misc STEM atomic-resolution misc spectroscopy misc VEELS misc 4D-STEM misc electric field mapping misc in situ misc Chemistry |
topic_browse |
misc QD1-999 misc STEM atomic-resolution misc spectroscopy misc VEELS misc 4D-STEM misc electric field mapping misc in situ misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanomaterials |
hierarchy_parent_id |
718627199 |
hierarchy_top_title |
Nanomaterials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627199 (DE-600)2662255-5 |
title |
STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging |
ctrlnum |
(DE-627)DOAJ016643046 (DE-599)DOAJ0f3002d67bf34af9b502b75f3bdb0d74 |
title_full |
STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging |
author_sort |
María de la Mata |
journal |
Nanomaterials |
journalStr |
Nanomaterials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
María de la Mata Sergio I. Molina |
container_volume |
12 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
María de la Mata |
doi_str_mv |
10.3390/nano12030337 |
author2-role |
verfasserin |
title_sort |
stem tools for semiconductor characterization: beyond high-resolution imaging |
callnumber |
QD1-999 |
title_auth |
STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging |
abstract |
The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies. |
abstractGer |
The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies. |
abstract_unstemmed |
The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 337 |
title_short |
STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging |
url |
https://doi.org/10.3390/nano12030337 https://doaj.org/article/0f3002d67bf34af9b502b75f3bdb0d74 https://www.mdpi.com/2079-4991/12/3/337 https://doaj.org/toc/2079-4991 |
remote_bool |
true |
author2 |
Sergio I. Molina |
author2Str |
Sergio I. Molina |
ppnlink |
718627199 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nano12030337 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T22:13:14.108Z |
_version_ |
1803597690026590208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016643046</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414202406.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano12030337</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016643046</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0f3002d67bf34af9b502b75f3bdb0d74</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">María de la Mata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">STEM atomic-resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VEELS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">4D-STEM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric field mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in situ</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergio I. Molina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 3, p 337</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 337</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano12030337</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0f3002d67bf34af9b502b75f3bdb0d74</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/12/3/337</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 337</subfield></datafield></record></collection>
|
score |
7.4008837 |