A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models
Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each...
Ausführliche Beschreibung
Autor*in: |
Mai Ibraheam [verfasserIn] Kin Fun Li [verfasserIn] Fayez Gebali [verfasserIn] Leonard E. Sielecki [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
convolutional neural network (CNN) |
---|
Übergeordnetes Werk: |
In: AI - MDPI AG, 2020, 2(2021), 4, Seite 552-577 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2021 ; number:4 ; pages:552-577 |
Links: |
---|
DOI / URN: |
10.3390/ai2040034 |
---|
Katalog-ID: |
DOAJ016644417 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ016644417 | ||
003 | DE-627 | ||
005 | 20240412125950.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ai2040034 |2 doi | |
035 | |a (DE-627)DOAJ016644417 | ||
035 | |a (DE-599)DOAJfb925e30808247efa42c5e0ba0a648cc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Mai Ibraheam |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed. | ||
650 | 4 | |a deep learning | |
650 | 4 | |a convolutional neural network (CNN) | |
650 | 4 | |a region-based CNN (R-CNN) models | |
650 | 4 | |a Deformable CNN (D-CNN) | |
650 | 4 | |a animal species detection | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Kin Fun Li |e verfasserin |4 aut | |
700 | 0 | |a Fayez Gebali |e verfasserin |4 aut | |
700 | 0 | |a Leonard E. Sielecki |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t AI |d MDPI AG, 2020 |g 2(2021), 4, Seite 552-577 |w (DE-627)1683326156 |x 26732688 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2021 |g number:4 |g pages:552-577 |
856 | 4 | 0 | |u https://doi.org/10.3390/ai2040034 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fb925e30808247efa42c5e0ba0a648cc |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2673-2688/2/4/34 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2673-2688 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2021 |e 4 |h 552-577 |
author_variant |
m i mi k f l kfl f g fg l e s les |
---|---|
matchkey_str |
article:26732688:2021----::promneoprsnnehneetfnmlpcedtcinnmg |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QA |
publishDate |
2021 |
allfields |
10.3390/ai2040034 doi (DE-627)DOAJ016644417 (DE-599)DOAJfb925e30808247efa42c5e0ba0a648cc DE-627 ger DE-627 rakwb eng QA75.5-76.95 Mai Ibraheam verfasserin aut A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed. deep learning convolutional neural network (CNN) region-based CNN (R-CNN) models Deformable CNN (D-CNN) animal species detection Electronic computers. Computer science Kin Fun Li verfasserin aut Fayez Gebali verfasserin aut Leonard E. Sielecki verfasserin aut In AI MDPI AG, 2020 2(2021), 4, Seite 552-577 (DE-627)1683326156 26732688 nnns volume:2 year:2021 number:4 pages:552-577 https://doi.org/10.3390/ai2040034 kostenfrei https://doaj.org/article/fb925e30808247efa42c5e0ba0a648cc kostenfrei https://www.mdpi.com/2673-2688/2/4/34 kostenfrei https://doaj.org/toc/2673-2688 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4 552-577 |
spelling |
10.3390/ai2040034 doi (DE-627)DOAJ016644417 (DE-599)DOAJfb925e30808247efa42c5e0ba0a648cc DE-627 ger DE-627 rakwb eng QA75.5-76.95 Mai Ibraheam verfasserin aut A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed. deep learning convolutional neural network (CNN) region-based CNN (R-CNN) models Deformable CNN (D-CNN) animal species detection Electronic computers. Computer science Kin Fun Li verfasserin aut Fayez Gebali verfasserin aut Leonard E. Sielecki verfasserin aut In AI MDPI AG, 2020 2(2021), 4, Seite 552-577 (DE-627)1683326156 26732688 nnns volume:2 year:2021 number:4 pages:552-577 https://doi.org/10.3390/ai2040034 kostenfrei https://doaj.org/article/fb925e30808247efa42c5e0ba0a648cc kostenfrei https://www.mdpi.com/2673-2688/2/4/34 kostenfrei https://doaj.org/toc/2673-2688 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4 552-577 |
allfields_unstemmed |
10.3390/ai2040034 doi (DE-627)DOAJ016644417 (DE-599)DOAJfb925e30808247efa42c5e0ba0a648cc DE-627 ger DE-627 rakwb eng QA75.5-76.95 Mai Ibraheam verfasserin aut A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed. deep learning convolutional neural network (CNN) region-based CNN (R-CNN) models Deformable CNN (D-CNN) animal species detection Electronic computers. Computer science Kin Fun Li verfasserin aut Fayez Gebali verfasserin aut Leonard E. Sielecki verfasserin aut In AI MDPI AG, 2020 2(2021), 4, Seite 552-577 (DE-627)1683326156 26732688 nnns volume:2 year:2021 number:4 pages:552-577 https://doi.org/10.3390/ai2040034 kostenfrei https://doaj.org/article/fb925e30808247efa42c5e0ba0a648cc kostenfrei https://www.mdpi.com/2673-2688/2/4/34 kostenfrei https://doaj.org/toc/2673-2688 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4 552-577 |
allfieldsGer |
10.3390/ai2040034 doi (DE-627)DOAJ016644417 (DE-599)DOAJfb925e30808247efa42c5e0ba0a648cc DE-627 ger DE-627 rakwb eng QA75.5-76.95 Mai Ibraheam verfasserin aut A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed. deep learning convolutional neural network (CNN) region-based CNN (R-CNN) models Deformable CNN (D-CNN) animal species detection Electronic computers. Computer science Kin Fun Li verfasserin aut Fayez Gebali verfasserin aut Leonard E. Sielecki verfasserin aut In AI MDPI AG, 2020 2(2021), 4, Seite 552-577 (DE-627)1683326156 26732688 nnns volume:2 year:2021 number:4 pages:552-577 https://doi.org/10.3390/ai2040034 kostenfrei https://doaj.org/article/fb925e30808247efa42c5e0ba0a648cc kostenfrei https://www.mdpi.com/2673-2688/2/4/34 kostenfrei https://doaj.org/toc/2673-2688 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4 552-577 |
allfieldsSound |
10.3390/ai2040034 doi (DE-627)DOAJ016644417 (DE-599)DOAJfb925e30808247efa42c5e0ba0a648cc DE-627 ger DE-627 rakwb eng QA75.5-76.95 Mai Ibraheam verfasserin aut A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed. deep learning convolutional neural network (CNN) region-based CNN (R-CNN) models Deformable CNN (D-CNN) animal species detection Electronic computers. Computer science Kin Fun Li verfasserin aut Fayez Gebali verfasserin aut Leonard E. Sielecki verfasserin aut In AI MDPI AG, 2020 2(2021), 4, Seite 552-577 (DE-627)1683326156 26732688 nnns volume:2 year:2021 number:4 pages:552-577 https://doi.org/10.3390/ai2040034 kostenfrei https://doaj.org/article/fb925e30808247efa42c5e0ba0a648cc kostenfrei https://www.mdpi.com/2673-2688/2/4/34 kostenfrei https://doaj.org/toc/2673-2688 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4 552-577 |
language |
English |
source |
In AI 2(2021), 4, Seite 552-577 volume:2 year:2021 number:4 pages:552-577 |
sourceStr |
In AI 2(2021), 4, Seite 552-577 volume:2 year:2021 number:4 pages:552-577 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
deep learning convolutional neural network (CNN) region-based CNN (R-CNN) models Deformable CNN (D-CNN) animal species detection Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
AI |
authorswithroles_txt_mv |
Mai Ibraheam @@aut@@ Kin Fun Li @@aut@@ Fayez Gebali @@aut@@ Leonard E. Sielecki @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1683326156 |
id |
DOAJ016644417 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016644417</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412125950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ai2040034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016644417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfb925e30808247efa42c5e0ba0a648cc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mai Ibraheam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network (CNN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">region-based CNN (R-CNN) models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformable CNN (D-CNN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">animal species detection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kin Fun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fayez Gebali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonard E. Sielecki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AI</subfield><subfield code="d">MDPI AG, 2020</subfield><subfield code="g">2(2021), 4, Seite 552-577</subfield><subfield code="w">(DE-627)1683326156</subfield><subfield code="x">26732688</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:552-577</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ai2040034</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fb925e30808247efa42c5e0ba0a648cc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-2688/2/4/34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-2688</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">552-577</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mai Ibraheam |
spellingShingle |
Mai Ibraheam misc QA75.5-76.95 misc deep learning misc convolutional neural network (CNN) misc region-based CNN (R-CNN) models misc Deformable CNN (D-CNN) misc animal species detection misc Electronic computers. Computer science A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models |
authorStr |
Mai Ibraheam |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1683326156 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA75 |
illustrated |
Not Illustrated |
issn |
26732688 |
topic_title |
QA75.5-76.95 A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models deep learning convolutional neural network (CNN) region-based CNN (R-CNN) models Deformable CNN (D-CNN) animal species detection |
topic |
misc QA75.5-76.95 misc deep learning misc convolutional neural network (CNN) misc region-based CNN (R-CNN) models misc Deformable CNN (D-CNN) misc animal species detection misc Electronic computers. Computer science |
topic_unstemmed |
misc QA75.5-76.95 misc deep learning misc convolutional neural network (CNN) misc region-based CNN (R-CNN) models misc Deformable CNN (D-CNN) misc animal species detection misc Electronic computers. Computer science |
topic_browse |
misc QA75.5-76.95 misc deep learning misc convolutional neural network (CNN) misc region-based CNN (R-CNN) models misc Deformable CNN (D-CNN) misc animal species detection misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
AI |
hierarchy_parent_id |
1683326156 |
hierarchy_top_title |
AI |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1683326156 |
title |
A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models |
ctrlnum |
(DE-627)DOAJ016644417 (DE-599)DOAJfb925e30808247efa42c5e0ba0a648cc |
title_full |
A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models |
author_sort |
Mai Ibraheam |
journal |
AI |
journalStr |
AI |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
552 |
author_browse |
Mai Ibraheam Kin Fun Li Fayez Gebali Leonard E. Sielecki |
container_volume |
2 |
class |
QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Mai Ibraheam |
doi_str_mv |
10.3390/ai2040034 |
author2-role |
verfasserin |
title_sort |
performance comparison and enhancement of animal species detection in images with various r-cnn models |
callnumber |
QA75.5-76.95 |
title_auth |
A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models |
abstract |
Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed. |
abstractGer |
Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed. |
abstract_unstemmed |
Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models |
url |
https://doi.org/10.3390/ai2040034 https://doaj.org/article/fb925e30808247efa42c5e0ba0a648cc https://www.mdpi.com/2673-2688/2/4/34 https://doaj.org/toc/2673-2688 |
remote_bool |
true |
author2 |
Kin Fun Li Fayez Gebali Leonard E. Sielecki |
author2Str |
Kin Fun Li Fayez Gebali Leonard E. Sielecki |
ppnlink |
1683326156 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ai2040034 |
callnumber-a |
QA75.5-76.95 |
up_date |
2024-07-03T22:13:42.259Z |
_version_ |
1803597719549247488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016644417</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412125950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ai2040034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016644417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfb925e30808247efa42c5e0ba0a648cc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mai Ibraheam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife–human and wildlife–vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network (CNN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">region-based CNN (R-CNN) models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformable CNN (D-CNN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">animal species detection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kin Fun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fayez Gebali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonard E. Sielecki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AI</subfield><subfield code="d">MDPI AG, 2020</subfield><subfield code="g">2(2021), 4, Seite 552-577</subfield><subfield code="w">(DE-627)1683326156</subfield><subfield code="x">26732688</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:552-577</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ai2040034</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fb925e30808247efa42c5e0ba0a648cc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-2688/2/4/34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-2688</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">552-577</subfield></datafield></record></collection>
|
score |
7.4029255 |