Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot
Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and mar...
Ausführliche Beschreibung
Autor*in: |
Oktawia Lewicka [verfasserIn] Mariusz Specht [verfasserIn] Andrzej Stateczny [verfasserIn] Cezary Specht [verfasserIn] Czesław Dyrcz [verfasserIn] Paweł Dąbrowski [verfasserIn] Bartosz Szostak [verfasserIn] Armin Halicki [verfasserIn] Marcin Stateczny [verfasserIn] Szymon Widźgowski [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 14(2022), 15, p 3525 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:15, p 3525 |
Links: |
---|
DOI / URN: |
10.3390/rs14153525 |
---|
Katalog-ID: |
DOAJ01669192X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ01669192X | ||
003 | DE-627 | ||
005 | 20240414112937.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs14153525 |2 doi | |
035 | |a (DE-627)DOAJ01669192X | ||
035 | |a (DE-599)DOAJ156ae6d83ac743c38982c27bf8b07d37 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Oktawia Lewicka |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods. | ||
650 | 4 | |a data integration | |
650 | 4 | |a hydroacoustic methods | |
650 | 4 | |a optoelectronic methods | |
650 | 4 | |a tombolo | |
650 | 4 | |a Unmanned Aerial Vehicle (UAV) | |
650 | 4 | |a Unmanned Surface Vehicle (USV) | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Mariusz Specht |e verfasserin |4 aut | |
700 | 0 | |a Andrzej Stateczny |e verfasserin |4 aut | |
700 | 0 | |a Cezary Specht |e verfasserin |4 aut | |
700 | 0 | |a Czesław Dyrcz |e verfasserin |4 aut | |
700 | 0 | |a Paweł Dąbrowski |e verfasserin |4 aut | |
700 | 0 | |a Bartosz Szostak |e verfasserin |4 aut | |
700 | 0 | |a Armin Halicki |e verfasserin |4 aut | |
700 | 0 | |a Marcin Stateczny |e verfasserin |4 aut | |
700 | 0 | |a Szymon Widźgowski |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 14(2022), 15, p 3525 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:15, p 3525 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs14153525 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/156ae6d83ac743c38982c27bf8b07d37 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/14/15/3525 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 15, p 3525 |
author_variant |
o l ol m s ms a s as c s cs c d cd p d pd b s bs a h ah m s ms s w sw |
---|---|
matchkey_str |
article:20724292:2022----::nlssfrnfrainehdohdocutcnoteetoidtbsdnhtm |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/rs14153525 doi (DE-627)DOAJ01669192X (DE-599)DOAJ156ae6d83ac743c38982c27bf8b07d37 DE-627 ger DE-627 rakwb eng Oktawia Lewicka verfasserin aut Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods. data integration hydroacoustic methods optoelectronic methods tombolo Unmanned Aerial Vehicle (UAV) Unmanned Surface Vehicle (USV) Science Q Mariusz Specht verfasserin aut Andrzej Stateczny verfasserin aut Cezary Specht verfasserin aut Czesław Dyrcz verfasserin aut Paweł Dąbrowski verfasserin aut Bartosz Szostak verfasserin aut Armin Halicki verfasserin aut Marcin Stateczny verfasserin aut Szymon Widźgowski verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 15, p 3525 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:15, p 3525 https://doi.org/10.3390/rs14153525 kostenfrei https://doaj.org/article/156ae6d83ac743c38982c27bf8b07d37 kostenfrei https://www.mdpi.com/2072-4292/14/15/3525 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 15, p 3525 |
spelling |
10.3390/rs14153525 doi (DE-627)DOAJ01669192X (DE-599)DOAJ156ae6d83ac743c38982c27bf8b07d37 DE-627 ger DE-627 rakwb eng Oktawia Lewicka verfasserin aut Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods. data integration hydroacoustic methods optoelectronic methods tombolo Unmanned Aerial Vehicle (UAV) Unmanned Surface Vehicle (USV) Science Q Mariusz Specht verfasserin aut Andrzej Stateczny verfasserin aut Cezary Specht verfasserin aut Czesław Dyrcz verfasserin aut Paweł Dąbrowski verfasserin aut Bartosz Szostak verfasserin aut Armin Halicki verfasserin aut Marcin Stateczny verfasserin aut Szymon Widźgowski verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 15, p 3525 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:15, p 3525 https://doi.org/10.3390/rs14153525 kostenfrei https://doaj.org/article/156ae6d83ac743c38982c27bf8b07d37 kostenfrei https://www.mdpi.com/2072-4292/14/15/3525 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 15, p 3525 |
allfields_unstemmed |
10.3390/rs14153525 doi (DE-627)DOAJ01669192X (DE-599)DOAJ156ae6d83ac743c38982c27bf8b07d37 DE-627 ger DE-627 rakwb eng Oktawia Lewicka verfasserin aut Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods. data integration hydroacoustic methods optoelectronic methods tombolo Unmanned Aerial Vehicle (UAV) Unmanned Surface Vehicle (USV) Science Q Mariusz Specht verfasserin aut Andrzej Stateczny verfasserin aut Cezary Specht verfasserin aut Czesław Dyrcz verfasserin aut Paweł Dąbrowski verfasserin aut Bartosz Szostak verfasserin aut Armin Halicki verfasserin aut Marcin Stateczny verfasserin aut Szymon Widźgowski verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 15, p 3525 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:15, p 3525 https://doi.org/10.3390/rs14153525 kostenfrei https://doaj.org/article/156ae6d83ac743c38982c27bf8b07d37 kostenfrei https://www.mdpi.com/2072-4292/14/15/3525 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 15, p 3525 |
allfieldsGer |
10.3390/rs14153525 doi (DE-627)DOAJ01669192X (DE-599)DOAJ156ae6d83ac743c38982c27bf8b07d37 DE-627 ger DE-627 rakwb eng Oktawia Lewicka verfasserin aut Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods. data integration hydroacoustic methods optoelectronic methods tombolo Unmanned Aerial Vehicle (UAV) Unmanned Surface Vehicle (USV) Science Q Mariusz Specht verfasserin aut Andrzej Stateczny verfasserin aut Cezary Specht verfasserin aut Czesław Dyrcz verfasserin aut Paweł Dąbrowski verfasserin aut Bartosz Szostak verfasserin aut Armin Halicki verfasserin aut Marcin Stateczny verfasserin aut Szymon Widźgowski verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 15, p 3525 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:15, p 3525 https://doi.org/10.3390/rs14153525 kostenfrei https://doaj.org/article/156ae6d83ac743c38982c27bf8b07d37 kostenfrei https://www.mdpi.com/2072-4292/14/15/3525 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 15, p 3525 |
allfieldsSound |
10.3390/rs14153525 doi (DE-627)DOAJ01669192X (DE-599)DOAJ156ae6d83ac743c38982c27bf8b07d37 DE-627 ger DE-627 rakwb eng Oktawia Lewicka verfasserin aut Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods. data integration hydroacoustic methods optoelectronic methods tombolo Unmanned Aerial Vehicle (UAV) Unmanned Surface Vehicle (USV) Science Q Mariusz Specht verfasserin aut Andrzej Stateczny verfasserin aut Cezary Specht verfasserin aut Czesław Dyrcz verfasserin aut Paweł Dąbrowski verfasserin aut Bartosz Szostak verfasserin aut Armin Halicki verfasserin aut Marcin Stateczny verfasserin aut Szymon Widźgowski verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 15, p 3525 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:15, p 3525 https://doi.org/10.3390/rs14153525 kostenfrei https://doaj.org/article/156ae6d83ac743c38982c27bf8b07d37 kostenfrei https://www.mdpi.com/2072-4292/14/15/3525 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 15, p 3525 |
language |
English |
source |
In Remote Sensing 14(2022), 15, p 3525 volume:14 year:2022 number:15, p 3525 |
sourceStr |
In Remote Sensing 14(2022), 15, p 3525 volume:14 year:2022 number:15, p 3525 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
data integration hydroacoustic methods optoelectronic methods tombolo Unmanned Aerial Vehicle (UAV) Unmanned Surface Vehicle (USV) Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Oktawia Lewicka @@aut@@ Mariusz Specht @@aut@@ Andrzej Stateczny @@aut@@ Cezary Specht @@aut@@ Czesław Dyrcz @@aut@@ Paweł Dąbrowski @@aut@@ Bartosz Szostak @@aut@@ Armin Halicki @@aut@@ Marcin Stateczny @@aut@@ Szymon Widźgowski @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ01669192X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01669192X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414112937.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs14153525</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01669192X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ156ae6d83ac743c38982c27bf8b07d37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Oktawia Lewicka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydroacoustic methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optoelectronic methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tombolo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unmanned Aerial Vehicle (UAV)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unmanned Surface Vehicle (USV)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariusz Specht</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrzej Stateczny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cezary Specht</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Czesław Dyrcz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paweł Dąbrowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bartosz Szostak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Halicki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcin Stateczny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Szymon Widźgowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 15, p 3525</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:15, p 3525</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs14153525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/156ae6d83ac743c38982c27bf8b07d37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/14/15/3525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">15, p 3525</subfield></datafield></record></collection>
|
author |
Oktawia Lewicka |
spellingShingle |
Oktawia Lewicka misc data integration misc hydroacoustic methods misc optoelectronic methods misc tombolo misc Unmanned Aerial Vehicle (UAV) misc Unmanned Surface Vehicle (USV) misc Science misc Q Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot |
authorStr |
Oktawia Lewicka |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot data integration hydroacoustic methods optoelectronic methods tombolo Unmanned Aerial Vehicle (UAV) Unmanned Surface Vehicle (USV) |
topic |
misc data integration misc hydroacoustic methods misc optoelectronic methods misc tombolo misc Unmanned Aerial Vehicle (UAV) misc Unmanned Surface Vehicle (USV) misc Science misc Q |
topic_unstemmed |
misc data integration misc hydroacoustic methods misc optoelectronic methods misc tombolo misc Unmanned Aerial Vehicle (UAV) misc Unmanned Surface Vehicle (USV) misc Science misc Q |
topic_browse |
misc data integration misc hydroacoustic methods misc optoelectronic methods misc tombolo misc Unmanned Aerial Vehicle (UAV) misc Unmanned Surface Vehicle (USV) misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot |
ctrlnum |
(DE-627)DOAJ01669192X (DE-599)DOAJ156ae6d83ac743c38982c27bf8b07d37 |
title_full |
Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot |
author_sort |
Oktawia Lewicka |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Oktawia Lewicka Mariusz Specht Andrzej Stateczny Cezary Specht Czesław Dyrcz Paweł Dąbrowski Bartosz Szostak Armin Halicki Marcin Stateczny Szymon Widźgowski |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Oktawia Lewicka |
doi_str_mv |
10.3390/rs14153525 |
author2-role |
verfasserin |
title_sort |
analysis of transformation methods of hydroacoustic and optoelectronic data based on the tombolo measurement campaign in sopot |
title_auth |
Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot |
abstract |
Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods. |
abstractGer |
Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods. |
abstract_unstemmed |
Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
15, p 3525 |
title_short |
Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot |
url |
https://doi.org/10.3390/rs14153525 https://doaj.org/article/156ae6d83ac743c38982c27bf8b07d37 https://www.mdpi.com/2072-4292/14/15/3525 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Mariusz Specht Andrzej Stateczny Cezary Specht Czesław Dyrcz Paweł Dąbrowski Bartosz Szostak Armin Halicki Marcin Stateczny Szymon Widźgowski |
author2Str |
Mariusz Specht Andrzej Stateczny Cezary Specht Czesław Dyrcz Paweł Dąbrowski Bartosz Szostak Armin Halicki Marcin Stateczny Szymon Widźgowski |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs14153525 |
up_date |
2024-07-03T22:28:50.127Z |
_version_ |
1803598671523086336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01669192X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414112937.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs14153525</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01669192X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ156ae6d83ac743c38982c27bf8b07d37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Oktawia Lewicka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Measurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data. The aim of this publication is to present the various transformation methods and their effects that relate to the data from the tombolo measurement campaign in Sopot conducted in 2018. Data obtained using GNSS Real Time Kinematic (RTK) measurements, Terrestrial Laser Scanning (TLS), the Unmanned Aerial Vehicle (UAV) and the Unmanned Surface Vehicle (USV) were transformed. On the basis of the coordinate transformation methods used, it can be concluded that the adjustment calculus method obtained the best results for the plane coordinates, while the method of P.S. Dąbrowski et al. obtained the best results for the height coordinates. The standard deviation for the difference of the modelled coordinates acquired by the method of P.S. Dąbrowski et al. with respect to the reference coordinates amounted to: 0.022 m (Northing), 0.040 m (Easting) and 0.019 m (height), respectively, while the adjustment calculus method allowed to obtain the following values: 0.009 m (Northing), 0.005 m (Easting) and 0.359 m (height). It can be assumed that a combination of these two seven-parameter transformation methods would provide the best results. In the future, a new seven-parameter transformation method should be developed based on the synthesis of these two existing methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydroacoustic methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optoelectronic methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tombolo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unmanned Aerial Vehicle (UAV)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unmanned Surface Vehicle (USV)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariusz Specht</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrzej Stateczny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cezary Specht</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Czesław Dyrcz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paweł Dąbrowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bartosz Szostak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Halicki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcin Stateczny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Szymon Widźgowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 15, p 3525</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:15, p 3525</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs14153525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/156ae6d83ac743c38982c27bf8b07d37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/14/15/3525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">15, p 3525</subfield></datafield></record></collection>
|
score |
7.4010057 |