Nonlinear Cylindrical Markers Using Metamaterials
In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of non...
Ausführliche Beschreibung
Autor*in: |
Diana V. Semenikhina [verfasserIn] Nikolay N. Gorbatenko [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 13(2021), 24, p 5006 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:24, p 5006 |
Links: |
---|
DOI / URN: |
10.3390/rs13245006 |
---|
Katalog-ID: |
DOAJ016866347 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ016866347 | ||
003 | DE-627 | ||
005 | 20240414222605.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs13245006 |2 doi | |
035 | |a (DE-627)DOAJ016866347 | ||
035 | |a (DE-599)DOAJ3da2ebfd8cf14b95bbacc349ed5a86b7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Diana V. Semenikhina |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear Cylindrical Markers Using Metamaterials |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas. | ||
650 | 4 | |a cylindrical metamaterial | |
650 | 4 | |a nonlinear marker | |
650 | 4 | |a Maxwell’s equations | |
650 | 4 | |a nonlinear boundary conditions | |
650 | 4 | |a nonlinear load | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Nikolay N. Gorbatenko |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 13(2021), 24, p 5006 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:24, p 5006 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs13245006 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3da2ebfd8cf14b95bbacc349ed5a86b7 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/13/24/5006 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 24, p 5006 |
author_variant |
d v s dvs n n g nng |
---|---|
matchkey_str |
article:20724292:2021----::olnaclnrclakruig |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/rs13245006 doi (DE-627)DOAJ016866347 (DE-599)DOAJ3da2ebfd8cf14b95bbacc349ed5a86b7 DE-627 ger DE-627 rakwb eng Diana V. Semenikhina verfasserin aut Nonlinear Cylindrical Markers Using Metamaterials 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas. cylindrical metamaterial nonlinear marker Maxwell’s equations nonlinear boundary conditions nonlinear load Science Q Nikolay N. Gorbatenko verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 24, p 5006 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:24, p 5006 https://doi.org/10.3390/rs13245006 kostenfrei https://doaj.org/article/3da2ebfd8cf14b95bbacc349ed5a86b7 kostenfrei https://www.mdpi.com/2072-4292/13/24/5006 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 24, p 5006 |
spelling |
10.3390/rs13245006 doi (DE-627)DOAJ016866347 (DE-599)DOAJ3da2ebfd8cf14b95bbacc349ed5a86b7 DE-627 ger DE-627 rakwb eng Diana V. Semenikhina verfasserin aut Nonlinear Cylindrical Markers Using Metamaterials 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas. cylindrical metamaterial nonlinear marker Maxwell’s equations nonlinear boundary conditions nonlinear load Science Q Nikolay N. Gorbatenko verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 24, p 5006 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:24, p 5006 https://doi.org/10.3390/rs13245006 kostenfrei https://doaj.org/article/3da2ebfd8cf14b95bbacc349ed5a86b7 kostenfrei https://www.mdpi.com/2072-4292/13/24/5006 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 24, p 5006 |
allfields_unstemmed |
10.3390/rs13245006 doi (DE-627)DOAJ016866347 (DE-599)DOAJ3da2ebfd8cf14b95bbacc349ed5a86b7 DE-627 ger DE-627 rakwb eng Diana V. Semenikhina verfasserin aut Nonlinear Cylindrical Markers Using Metamaterials 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas. cylindrical metamaterial nonlinear marker Maxwell’s equations nonlinear boundary conditions nonlinear load Science Q Nikolay N. Gorbatenko verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 24, p 5006 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:24, p 5006 https://doi.org/10.3390/rs13245006 kostenfrei https://doaj.org/article/3da2ebfd8cf14b95bbacc349ed5a86b7 kostenfrei https://www.mdpi.com/2072-4292/13/24/5006 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 24, p 5006 |
allfieldsGer |
10.3390/rs13245006 doi (DE-627)DOAJ016866347 (DE-599)DOAJ3da2ebfd8cf14b95bbacc349ed5a86b7 DE-627 ger DE-627 rakwb eng Diana V. Semenikhina verfasserin aut Nonlinear Cylindrical Markers Using Metamaterials 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas. cylindrical metamaterial nonlinear marker Maxwell’s equations nonlinear boundary conditions nonlinear load Science Q Nikolay N. Gorbatenko verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 24, p 5006 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:24, p 5006 https://doi.org/10.3390/rs13245006 kostenfrei https://doaj.org/article/3da2ebfd8cf14b95bbacc349ed5a86b7 kostenfrei https://www.mdpi.com/2072-4292/13/24/5006 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 24, p 5006 |
allfieldsSound |
10.3390/rs13245006 doi (DE-627)DOAJ016866347 (DE-599)DOAJ3da2ebfd8cf14b95bbacc349ed5a86b7 DE-627 ger DE-627 rakwb eng Diana V. Semenikhina verfasserin aut Nonlinear Cylindrical Markers Using Metamaterials 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas. cylindrical metamaterial nonlinear marker Maxwell’s equations nonlinear boundary conditions nonlinear load Science Q Nikolay N. Gorbatenko verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 24, p 5006 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:24, p 5006 https://doi.org/10.3390/rs13245006 kostenfrei https://doaj.org/article/3da2ebfd8cf14b95bbacc349ed5a86b7 kostenfrei https://www.mdpi.com/2072-4292/13/24/5006 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 24, p 5006 |
language |
English |
source |
In Remote Sensing 13(2021), 24, p 5006 volume:13 year:2021 number:24, p 5006 |
sourceStr |
In Remote Sensing 13(2021), 24, p 5006 volume:13 year:2021 number:24, p 5006 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cylindrical metamaterial nonlinear marker Maxwell’s equations nonlinear boundary conditions nonlinear load Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Diana V. Semenikhina @@aut@@ Nikolay N. Gorbatenko @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ016866347 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016866347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414222605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13245006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016866347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3da2ebfd8cf14b95bbacc349ed5a86b7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Diana V. Semenikhina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Cylindrical Markers Using Metamaterials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cylindrical metamaterial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear marker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell’s equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear load</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikolay N. Gorbatenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 24, p 5006</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:24, p 5006</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13245006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3da2ebfd8cf14b95bbacc349ed5a86b7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/24/5006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">24, p 5006</subfield></datafield></record></collection>
|
author |
Diana V. Semenikhina |
spellingShingle |
Diana V. Semenikhina misc cylindrical metamaterial misc nonlinear marker misc Maxwell’s equations misc nonlinear boundary conditions misc nonlinear load misc Science misc Q Nonlinear Cylindrical Markers Using Metamaterials |
authorStr |
Diana V. Semenikhina |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Nonlinear Cylindrical Markers Using Metamaterials cylindrical metamaterial nonlinear marker Maxwell’s equations nonlinear boundary conditions nonlinear load |
topic |
misc cylindrical metamaterial misc nonlinear marker misc Maxwell’s equations misc nonlinear boundary conditions misc nonlinear load misc Science misc Q |
topic_unstemmed |
misc cylindrical metamaterial misc nonlinear marker misc Maxwell’s equations misc nonlinear boundary conditions misc nonlinear load misc Science misc Q |
topic_browse |
misc cylindrical metamaterial misc nonlinear marker misc Maxwell’s equations misc nonlinear boundary conditions misc nonlinear load misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Nonlinear Cylindrical Markers Using Metamaterials |
ctrlnum |
(DE-627)DOAJ016866347 (DE-599)DOAJ3da2ebfd8cf14b95bbacc349ed5a86b7 |
title_full |
Nonlinear Cylindrical Markers Using Metamaterials |
author_sort |
Diana V. Semenikhina |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Diana V. Semenikhina Nikolay N. Gorbatenko |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Diana V. Semenikhina |
doi_str_mv |
10.3390/rs13245006 |
author2-role |
verfasserin |
title_sort |
nonlinear cylindrical markers using metamaterials |
title_auth |
Nonlinear Cylindrical Markers Using Metamaterials |
abstract |
In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas. |
abstractGer |
In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas. |
abstract_unstemmed |
In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
24, p 5006 |
title_short |
Nonlinear Cylindrical Markers Using Metamaterials |
url |
https://doi.org/10.3390/rs13245006 https://doaj.org/article/3da2ebfd8cf14b95bbacc349ed5a86b7 https://www.mdpi.com/2072-4292/13/24/5006 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Nikolay N. Gorbatenko |
author2Str |
Nikolay N. Gorbatenko |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs13245006 |
up_date |
2024-07-03T23:20:35.330Z |
_version_ |
1803601927556038656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016866347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414222605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13245006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016866347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3da2ebfd8cf14b95bbacc349ed5a86b7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Diana V. Semenikhina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Cylindrical Markers Using Metamaterials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the research of nonlinear cylindrical metastructure was obtained. An algorithm for finding the total field of a nonlinearly loaded perfectly conducting cylinder covered with a metamaterial (MM) layer based on Maxwell’s equations with nonlinear boundary conditions on the surface of nonlinear loads (NL) was developed. A software package implementing this algorithm was created. Based on the results of numerical calculations of the program, the scattering diagrams of a metal cylinder with NL, covered with a layer of MM at the fundamental, second, and third harmonics were obtained. The dependences of the harmonics of the scattered field on the parameters of nonlinear loads were also studied. With the help of numerical simulation using Ansys HFSS, the extract procedure of the effective parameters of cylindrical MM was realized. Based on the results of calculation and numerical simulation, a model of a nonlinear cylindrical structure of two radii was made and an experimental study was carried out. As a result of the experiment, the frequency characteristics of the metastructure were obtained at various angles of incidence of the wave. The results of numerical simulation were confirmed by the results of the experiment. It is shown that the use of the provided nonlinear cylindrical marker with metamaterial makes it possible to obtain the levels of the first and second harmonics in a scattered field of the same order. This structure can be used as a nonlinear marker in both military and civilian areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cylindrical metamaterial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear marker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell’s equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear load</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikolay N. Gorbatenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 24, p 5006</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:24, p 5006</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13245006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3da2ebfd8cf14b95bbacc349ed5a86b7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/24/5006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">24, p 5006</subfield></datafield></record></collection>
|
score |
7.39966 |