Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production
Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Th...
Ausführliche Beschreibung
Autor*in: |
Mary Sutton [verfasserIn] John Doyle [verfasserIn] Dario Chavez [verfasserIn] Anish Malladi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Horticulturae - MDPI AG, 2017, 6(2020), 3, p 41 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2020 ; number:3, p 41 |
Links: |
---|
DOI / URN: |
10.3390/horticulturae6030041 |
---|
Katalog-ID: |
DOAJ016880234 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ016880234 | ||
003 | DE-627 | ||
005 | 20240412223225.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/horticulturae6030041 |2 doi | |
035 | |a (DE-627)DOAJ016880234 | ||
035 | |a (DE-599)DOAJ118fbd2c72e443bd8d17674c360249d0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SB1-1110 | |
100 | 0 | |a Mary Sutton |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events. | ||
650 | 4 | |a bloom-thinning | |
650 | 4 | |a crop-load management | |
650 | 4 | |a fruit growth and development | |
650 | 4 | |a fruit number | |
650 | 4 | |a fruit size | |
653 | 0 | |a Plant culture | |
700 | 0 | |a John Doyle |e verfasserin |4 aut | |
700 | 0 | |a Dario Chavez |e verfasserin |4 aut | |
700 | 0 | |a Anish Malladi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Horticulturae |d MDPI AG, 2017 |g 6(2020), 3, p 41 |w (DE-627)820684155 |w (DE-600)2813983-5 |x 23117524 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2020 |g number:3, p 41 |
856 | 4 | 0 | |u https://doi.org/10.3390/horticulturae6030041 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/118fbd2c72e443bd8d17674c360249d0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2311-7524/6/3/41 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2311-7524 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2020 |e 3, p 41 |
author_variant |
m s ms j d jd d c dc a m am |
---|---|
matchkey_str |
article:23117524:2020----::piiigritinnsrtgeipahmrns |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
SB |
publishDate |
2020 |
allfields |
10.3390/horticulturae6030041 doi (DE-627)DOAJ016880234 (DE-599)DOAJ118fbd2c72e443bd8d17674c360249d0 DE-627 ger DE-627 rakwb eng SB1-1110 Mary Sutton verfasserin aut Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events. bloom-thinning crop-load management fruit growth and development fruit number fruit size Plant culture John Doyle verfasserin aut Dario Chavez verfasserin aut Anish Malladi verfasserin aut In Horticulturae MDPI AG, 2017 6(2020), 3, p 41 (DE-627)820684155 (DE-600)2813983-5 23117524 nnns volume:6 year:2020 number:3, p 41 https://doi.org/10.3390/horticulturae6030041 kostenfrei https://doaj.org/article/118fbd2c72e443bd8d17674c360249d0 kostenfrei https://www.mdpi.com/2311-7524/6/3/41 kostenfrei https://doaj.org/toc/2311-7524 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 3, p 41 |
spelling |
10.3390/horticulturae6030041 doi (DE-627)DOAJ016880234 (DE-599)DOAJ118fbd2c72e443bd8d17674c360249d0 DE-627 ger DE-627 rakwb eng SB1-1110 Mary Sutton verfasserin aut Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events. bloom-thinning crop-load management fruit growth and development fruit number fruit size Plant culture John Doyle verfasserin aut Dario Chavez verfasserin aut Anish Malladi verfasserin aut In Horticulturae MDPI AG, 2017 6(2020), 3, p 41 (DE-627)820684155 (DE-600)2813983-5 23117524 nnns volume:6 year:2020 number:3, p 41 https://doi.org/10.3390/horticulturae6030041 kostenfrei https://doaj.org/article/118fbd2c72e443bd8d17674c360249d0 kostenfrei https://www.mdpi.com/2311-7524/6/3/41 kostenfrei https://doaj.org/toc/2311-7524 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 3, p 41 |
allfields_unstemmed |
10.3390/horticulturae6030041 doi (DE-627)DOAJ016880234 (DE-599)DOAJ118fbd2c72e443bd8d17674c360249d0 DE-627 ger DE-627 rakwb eng SB1-1110 Mary Sutton verfasserin aut Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events. bloom-thinning crop-load management fruit growth and development fruit number fruit size Plant culture John Doyle verfasserin aut Dario Chavez verfasserin aut Anish Malladi verfasserin aut In Horticulturae MDPI AG, 2017 6(2020), 3, p 41 (DE-627)820684155 (DE-600)2813983-5 23117524 nnns volume:6 year:2020 number:3, p 41 https://doi.org/10.3390/horticulturae6030041 kostenfrei https://doaj.org/article/118fbd2c72e443bd8d17674c360249d0 kostenfrei https://www.mdpi.com/2311-7524/6/3/41 kostenfrei https://doaj.org/toc/2311-7524 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 3, p 41 |
allfieldsGer |
10.3390/horticulturae6030041 doi (DE-627)DOAJ016880234 (DE-599)DOAJ118fbd2c72e443bd8d17674c360249d0 DE-627 ger DE-627 rakwb eng SB1-1110 Mary Sutton verfasserin aut Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events. bloom-thinning crop-load management fruit growth and development fruit number fruit size Plant culture John Doyle verfasserin aut Dario Chavez verfasserin aut Anish Malladi verfasserin aut In Horticulturae MDPI AG, 2017 6(2020), 3, p 41 (DE-627)820684155 (DE-600)2813983-5 23117524 nnns volume:6 year:2020 number:3, p 41 https://doi.org/10.3390/horticulturae6030041 kostenfrei https://doaj.org/article/118fbd2c72e443bd8d17674c360249d0 kostenfrei https://www.mdpi.com/2311-7524/6/3/41 kostenfrei https://doaj.org/toc/2311-7524 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 3, p 41 |
allfieldsSound |
10.3390/horticulturae6030041 doi (DE-627)DOAJ016880234 (DE-599)DOAJ118fbd2c72e443bd8d17674c360249d0 DE-627 ger DE-627 rakwb eng SB1-1110 Mary Sutton verfasserin aut Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events. bloom-thinning crop-load management fruit growth and development fruit number fruit size Plant culture John Doyle verfasserin aut Dario Chavez verfasserin aut Anish Malladi verfasserin aut In Horticulturae MDPI AG, 2017 6(2020), 3, p 41 (DE-627)820684155 (DE-600)2813983-5 23117524 nnns volume:6 year:2020 number:3, p 41 https://doi.org/10.3390/horticulturae6030041 kostenfrei https://doaj.org/article/118fbd2c72e443bd8d17674c360249d0 kostenfrei https://www.mdpi.com/2311-7524/6/3/41 kostenfrei https://doaj.org/toc/2311-7524 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 3, p 41 |
language |
English |
source |
In Horticulturae 6(2020), 3, p 41 volume:6 year:2020 number:3, p 41 |
sourceStr |
In Horticulturae 6(2020), 3, p 41 volume:6 year:2020 number:3, p 41 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bloom-thinning crop-load management fruit growth and development fruit number fruit size Plant culture |
isfreeaccess_bool |
true |
container_title |
Horticulturae |
authorswithroles_txt_mv |
Mary Sutton @@aut@@ John Doyle @@aut@@ Dario Chavez @@aut@@ Anish Malladi @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
820684155 |
id |
DOAJ016880234 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016880234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412223225.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/horticulturae6030041</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016880234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ118fbd2c72e443bd8d17674c360249d0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mary Sutton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bloom-thinning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop-load management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit growth and development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit size</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Doyle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dario Chavez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anish Malladi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Horticulturae</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">6(2020), 3, p 41</subfield><subfield code="w">(DE-627)820684155</subfield><subfield code="w">(DE-600)2813983-5</subfield><subfield code="x">23117524</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3, p 41</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/horticulturae6030041</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/118fbd2c72e443bd8d17674c360249d0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2311-7524/6/3/41</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2311-7524</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2020</subfield><subfield code="e">3, p 41</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Mary Sutton |
spellingShingle |
Mary Sutton misc SB1-1110 misc bloom-thinning misc crop-load management misc fruit growth and development misc fruit number misc fruit size misc Plant culture Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production |
authorStr |
Mary Sutton |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684155 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SB1-1110 |
illustrated |
Not Illustrated |
issn |
23117524 |
topic_title |
SB1-1110 Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production bloom-thinning crop-load management fruit growth and development fruit number fruit size |
topic |
misc SB1-1110 misc bloom-thinning misc crop-load management misc fruit growth and development misc fruit number misc fruit size misc Plant culture |
topic_unstemmed |
misc SB1-1110 misc bloom-thinning misc crop-load management misc fruit growth and development misc fruit number misc fruit size misc Plant culture |
topic_browse |
misc SB1-1110 misc bloom-thinning misc crop-load management misc fruit growth and development misc fruit number misc fruit size misc Plant culture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Horticulturae |
hierarchy_parent_id |
820684155 |
hierarchy_top_title |
Horticulturae |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684155 (DE-600)2813983-5 |
title |
Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production |
ctrlnum |
(DE-627)DOAJ016880234 (DE-599)DOAJ118fbd2c72e443bd8d17674c360249d0 |
title_full |
Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production |
author_sort |
Mary Sutton |
journal |
Horticulturae |
journalStr |
Horticulturae |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Mary Sutton John Doyle Dario Chavez Anish Malladi |
container_volume |
6 |
class |
SB1-1110 |
format_se |
Elektronische Aufsätze |
author-letter |
Mary Sutton |
doi_str_mv |
10.3390/horticulturae6030041 |
author2-role |
verfasserin |
title_sort |
optimizing fruit-thinning strategies in peach (<em<prunus persica</em<) production |
callnumber |
SB1-1110 |
title_auth |
Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production |
abstract |
Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events. |
abstractGer |
Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events. |
abstract_unstemmed |
Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 41 |
title_short |
Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production |
url |
https://doi.org/10.3390/horticulturae6030041 https://doaj.org/article/118fbd2c72e443bd8d17674c360249d0 https://www.mdpi.com/2311-7524/6/3/41 https://doaj.org/toc/2311-7524 |
remote_bool |
true |
author2 |
John Doyle Dario Chavez Anish Malladi |
author2Str |
John Doyle Dario Chavez Anish Malladi |
ppnlink |
820684155 |
callnumber-subject |
SB - Plant Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/horticulturae6030041 |
callnumber-a |
SB1-1110 |
up_date |
2024-07-03T23:24:17.458Z |
_version_ |
1803602160475176960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ016880234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412223225.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/horticulturae6030041</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ016880234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ118fbd2c72e443bd8d17674c360249d0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mary Sutton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimizing Fruit-Thinning Strategies in Peach (<em<Prunus persica</em<) Production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fruit size is a highly valued commercial trait in peach. Competition among fruit and among other sinks on a tree reduces potential growth rate of the fruit. Hence, crop-load management strategies such as thinning (removal of flowers or fruit) are often practiced by growers to optimize fruit size. Thinning can be performed at bloom or during early fruit development and at different intensities to optimize fruit growth responses. Responses to thinning may be cultivar and location specific. The objective of the current study was to fine-tune thinning strategies in the southeastern United States, a major peach producing region. Timing and intensity of thinning were evaluated across multiple cultivars over three years. Thinning at bloom or at 21 d after full bloom (DAFB) improved fruit size in comparison to unthinned trees in ‘Cary Mac’ and ‘July Prince’, respectively, in one year. Bloom-thinning reduced fruit yield (kg per tree) in the above cultivars in one year, suggesting that flower thinning alone may not be a viable option in this region. Intensity of thinning, evaluated as spacings of 15 cm and 20 cm between fruit, did not differentially affect fruit weight or yield. However, fruit diameter decreased quadratically with increasing fruit number per tree in ‘Cary Mac’, ‘July Prince’ and ‘Summer Flame’. Similarly, fruit weight decreased quadratically in response to increase in fruit number per tree in ‘Cary Mac’ and ‘July Prince’. Further, yield-per-tree decreased with increasing fruit size in ‘Cary Mac’ and ‘July Prince’. Importantly, these relationships were cultivar specific. Together, the data suggest that achieving a target fruit number per tree is an effective strategy for crop-load management to optimize fruit size in southeastern peach production. The target fruit number per tree may potentially be achieved through a combination of flower and fruit-thinning during early fruit development. Such an approach may provide flexibility in crop-load management in relation to adverse weather events.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bloom-thinning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop-load management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit growth and development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit size</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Doyle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dario Chavez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anish Malladi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Horticulturae</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">6(2020), 3, p 41</subfield><subfield code="w">(DE-627)820684155</subfield><subfield code="w">(DE-600)2813983-5</subfield><subfield code="x">23117524</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3, p 41</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/horticulturae6030041</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/118fbd2c72e443bd8d17674c360249d0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2311-7524/6/3/41</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2311-7524</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2020</subfield><subfield code="e">3, p 41</subfield></datafield></record></collection>
|
score |
7.402587 |